6533b86dfe1ef96bd12ca235

RESEARCH PRODUCT

Modeling X-ray emission from stellar coronae

S. G. GregoryM. JardineC. ArgiroffiJ.-f. DonatiEric Stempels

subject

ConvectionPhysicsopacity and line formation Magnetic and electric fieldField (physics)Astrophysics (astro-ph)FOS: Physical sciencesCoronal loopAstrophysicsPlasmapolarization of starlightAstrophysicsMagnetic fieldlaw.inventionStarsSettore FIS/05 - Astronomia E Astrofisicaradiative transferlawX-ray emission spectra and fluorescence Stellar atmospheresRadiative transferAstrophysics::Solar and Stellar AstrophysicsHydrostatic equilibrium

description

By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.

10.1063/1.3099184http://arxiv.org/abs/0809.4222