6533b834fe1ef96bd129cda3

RESEARCH PRODUCT

The linearized Calderón problem on complex manifolds

Mikko SaloLeo TzouColin Guillarmou

subject

Class (set theory)Pure mathematicsGeneral MathematicsHolomorphic function01 natural sciencesinversio-ongelmatSet (abstract data type)symbols.namesake[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematics[MATH]Mathematics [math]complex manifoldMathematics::Symplectic GeometryMathematicsosittaisdifferentiaaliyhtälötCalderón problemMathematics::Complex VariablesApplied MathematicsRiemann surface010102 general mathematicsLimitingStandard methodsManifold010101 applied mathematicsHarmonic function[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsinverse problemMathematics::Differential Geometrymonistot

description

International audience; In this note we show that on any compact subdomain of a Kähler manifold that admits sufficiently many global holomorphic functions , the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calderón problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of Kähler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calderón problem in higher dimensions. The argument is based on constructing Morse holo-morphic functions with approximately prescribed critical points. This extends results of [GT11 GT11] from the case of Riemann surfaces to higher dimensional complex manifolds.

https://hal.archives-ouvertes.fr/hal-01827890