6533b834fe1ef96bd129ce29
RESEARCH PRODUCT
Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed
R.m. Fernández-domeneB. Lucas-granadosJosé García-antónRita Sánchez-tovarsubject
NanostructureMaterials scienceNanostructureBand gapIron oxideGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakechemistry.chemical_compoundIron oxideWater splittingPhotocurrentNanoestructuresAnodizingHidrodinàmicaPhotocatalystSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsDielectric spectroscopyHydrodynamic conditionsChemical engineeringchemistrysymbolsWater splitting0210 nano-technologyRaman spectroscopydescription
[EN] Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (alpha-Fe2O3) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis,. Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching similar to 0.130 mA cm(-2) at 0.54V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-15 |