6533b834fe1ef96bd129d4f2

RESEARCH PRODUCT

Long-Distance Contributions to theKL→μ+μ−Decay Width

D. Gómez DummAntonio Pich

subject

PhysicsParticle physicsChiral perturbation theoryGeneral Physics and AstronomyAtomic physics

description

The dispersive two-photon contribution to the ${K}_{L}\ensuremath{\rightarrow}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ decay amplitude is analyzed, using chiral perturbation theory techniques and large- ${N}_{C}$ considerations. A consistent description of the decays ${\ensuremath{\pi}}^{0}\ensuremath{\rightarrow}{e}^{+}{e}^{\ensuremath{-}}$, $\ensuremath{\eta}\ensuremath{\rightarrow}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$, and ${K}_{L}\ensuremath{\rightarrow}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ is obtained. As a by-product, one predicts $B(\ensuremath{\eta}\ensuremath{\rightarrow}{e}^{+}{e}^{\ensuremath{-}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(5.8\ifmmode\pm\else\textpm\fi{}0.2)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}9}$ and $B({K}_{L}\ensuremath{\rightarrow}{e}^{+}{e}^{\ensuremath{-}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(9.0\ifmmode\pm\else\textpm\fi{}0.4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}12}$.

https://doi.org/10.1103/physrevlett.80.4633