6533b834fe1ef96bd129d5f6

RESEARCH PRODUCT

Heisenberg quasiregular ellipticity

Jeremy T. TysonAnton LukyanenkoKatrin Fässler

subject

Pure mathematicsGeneral MathematicsSobolev–Poincaré inequality01 natural sciences3-sphereMathematics - Geometric TopologyMathematics - Metric GeometryEuclidean geometryHeisenberg groupFOS: Mathematicssub-Riemannian manifold0101 mathematicsComplex Variables (math.CV)topologiaUnknotLink (knot theory)Complement (set theory)MathematicsMathematics::Complex VariablesMathematics - Complex Variablescapacity010102 general mathematicsta111Hopf linkGeometric Topology (math.GT)Metric Geometry (math.MG)quasiregular mappingisoperimetric inequality3-sphereHopf linkcontact manifoldlink complementpotentiaaliteoriaMathematics::Differential GeometryIsoperimetric inequalitymonistot

description

Following the Euclidean results of Varopoulos and Pankka--Rajala, we provide a necessary topological condition for a sub-Riemannian 3-manifold $M$ to admit a nonconstant quasiregular mapping from the sub-Riemannian Heisenberg group $\mathbb{H}$. As an application, we show that a link complement $S^3\backslash L$ has a sub-Riemannian metric admitting such a mapping only if $L$ is empty, the unknot or Hopf link. In the converse direction, if $L$ is empty, a specific unknot or Hopf link, we construct a quasiregular mapping from $\mathbb{H}$ to $S^3\backslash L$. The main result is obtained by translating a growth condition on $\pi_1(M)$ into the existence of a supersolution to the $4$-harmonic equation, and relies on recent advances in the study of analysis and potential theory on metric spaces.

http://arxiv.org/abs/1610.07665