6533b834fe1ef96bd129d640
RESEARCH PRODUCT
Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering
Valerio BrucatoFrancesco Carfì PaviaVincenzo La CarrubbaGaetano GiammonaFabio Salvatore Palumbosubject
ScaffoldMaterials sciencePolyestersBioengineeringBiocompatible MaterialsScaffoldBiomaterialschemistry.chemical_compoundCrystallinityTissue engineeringCopolymerComposite materialPorosityDerivatizationDrug CarriersCalorimetry Differential ScanningTissue EngineeringTemperatureProteinsPolymer graftCharacterization (materials science)chemistryMechanics of MaterialsPoly-L-lactic acidThermally induced phase separationPorosityDerivative (chemistry)description
Abstract In this study a chemical grafting procedure was set up in order to link high molecular weight poly L-lactic acid (PLLA) chains to the hydrophilic α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) backbone. A graft copolymer named PHEA-g-PLLA (or simply PHEA–PLLA) was obtained bearing a degree of derivatization of 1.0 mol.% of PLLA as grafted chain. This new hybrid derivative offers both the opportune crystallinity necessary for the production of scaffolds trough a thermally induced phase separation (TIPS) technique and the proper chemical reactivity to perform further functionalizations with bio-effectors and drugs. PHEA–PLLA porous scaffolds for tissue engineering applications were successfully obtained via TIPS and characterized. Structures with an open porosity and a good level of interconnection were detected. As the applicability of the scaffold is mainly dependent on its pore size, preliminary studies about the mechanisms governing scaffold's pore diameter were carried out.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-01 |