6533b834fe1ef96bd129d700

RESEARCH PRODUCT

Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae

Eckhard ThinesJohannes C. LiermannPatrick H RiegerStefan JacobAnja SchüfflerAndrew J. FosterLouis P. SandjoTill OpatzThomas Grötsch

subject

0106 biological sciences0301 basic medicineMagnaportheMutantSecondary Metabolism01 natural sciencesMicrobiologyMicrobiology03 medical and health sciencesPolyketideGene Expression Regulation FungalPolyketide synthaseAxenicGenePlant DiseasesRegulation of gene expressionbiologyFungal geneticsfood and beveragesOryzabiology.organism_classificationPlant LeavesMagnaporthe030104 developmental biologyBenzaldehydesMultigene FamilyPolyketidesbiology.proteinFatty AlcoholsPolyketide SynthasesTranscription FactorsResearch Article010606 plant biology & botany

description

Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome close to MoPKS19, resulted in a mutant exclusively producing dihydropyriculol and dihydropyriculariol. By contrast, overexpression of MoC19OXR1 resulted in a mutant strain only producing pyriculol. The MoPKS19 cluster, furthermore, comprises two transcription factors MoC19TRF1 and MoC19TRF2, which were both found individually to act as negative regulators repressing gene expression of MoPKS19. Additionally, extracts of ΔMopks19 and ΔMoC19oxr1 made from axenic cultures failed to induce lesions on rice leaves compared to extracts of the wild-type strain. Consequently, pyriculol and its isomer pyriculariol appear to be the only lesion-inducing secondary metabolites produced by M. oryzae wild-type (MoWT) under these culture conditions. Interestingly, the mutants unable to produce pyriculol and pyriculariol were as pathogenic as MoWT, demonstrating that pyriculol is not required for infection.

https://doi.org/10.1099/mic.0.000396