6533b834fe1ef96bd129d80f
RESEARCH PRODUCT
Biological mineral content in Iberian skeletal cremains for control of diagenetic factors employing multivariate statistics
Agustin DiezJoan BernabeuGianni GallelloJulia KuligowskiAgustín Pastorsubject
ArcheologyMultivariate statisticsSoil testInductively coupled plasma atomic emission spectroscopyPrincipal component analysisPartial least squares regressionDendrogramMineralogyLinear discriminant analysisGeologyDiagenesisdescription
Abstract The aim of this study was to define a strategy for a correct selection of bone samples by employing inductively coupled plasma optical emission spectroscopy (ICP-OES) for reconstructing the biological mineral content in bones through the determination of major elements, trace elements and Rare Earth Elements (REE, lanthanides) in skeletal cremains of ancient Iberians (III–II B.C), discovered in the Necropolis of Corral de Saus (Moixent, Valencia) between 1972 and 1979. The biological mineral content was determined taking into account diagenetic factors. A control method for a better reading of results was applied. To explore large geochemical datasets and to reduce the number of variables, Principal Component Analysis (PCA) was used, thus, providing a deeper insight into the structure of the variance of the dataset. PCA shows that the elemental profiles of bone and soil samples are clearly different. Bone samples obtained from the outer bone layer were shown to have a different elemental composition; more similar to soil samples than samples of the inner bone layer. PCA scores and loadings plots were preferred to dendrograms obtained using Cluster Analysis, due to the limits of the latter one to appreciate the spatial ordering of samples. Partial least squares discriminant analysis (PLS-DA), a frequently used supervised classification method, was applied to differentiate between degradation states of bone samples. PLS-DA results obtained in this study confirmed that changes derived from different burning conditions were associated with transformations in the mineral part of the bones. Accordingly, carbonized bones can be differentiated from cremated bones. Class assignment of bone samples with uncertain thermal conditions in dependence on their elemental composition has shown to be feasible. Consequently, for biochemical-archaeological studies the analysis and statistical classification of carbonized and cremated archaeological bones, as well as those exposed to unknown thermal conditions together with experiments in modern bones, are recommended.
year | journal | country | edition | language |
---|---|---|---|---|
2013-05-01 | Journal of Archaeological Science |