6533b834fe1ef96bd129d8c4

RESEARCH PRODUCT

FABC: Retinal Vessel Segmentation Using AdaBoost

Emanuele TruccoCarmen Alina LupascuDomenico Tegolo

subject

Databases FactualComputer scienceFeature vectorFeature extractionNormal DistributionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingModels BiologicalEdge detectionArtificial IntelligenceImage Processing Computer-AssistedHumansSegmentationComputer visionAdaBoostFluorescein AngiographyElectrical and Electronic EngineeringTraining setPixelContextual image classificationSettore INF/01 - Informaticabusiness.industryReproducibility of ResultsRetinal VesselsWavelet transformBayes TheoremPattern recognitionGeneral MedicineImage segmentationComputer Science ApplicationsComputingMethodologies_PATTERNRECOGNITIONROC CurveTest setAdaBoost classifier retinal images vessel segmentationArtificial intelligencebusinessAlgorithmsBiotechnology

description

This paper presents a method for automated vessel segmentation in retinal images. For each pixel in the field of view of the image, a 41-D feature vector is constructed, encoding information on the local intensity structure, spatial properties, and geometry at multiple scales. An AdaBoost classifier is trained on 789 914 gold standard examples of vessel and nonvessel pixels, then used for classifying previously unseen images. The algorithm was tested on the public digital retinal images for vessel extraction (DRIVE) set, frequently used in the literature and consisting of 40 manually labeled images with gold standard. Results were compared experimentally with those of eight algorithms as well as the additional manual segmentation provided by DRIVE. Training was conducted confined to the dedicated training set from the DRIVE database, and feature-based AdaBoost classifier (FABC) was tested on the 20 images from the test set. FABC achieved an area under the receiver operating characteristic (ROC) curve of 0.9561, in line with state-of-the-art approaches, but outperforming their accuracy ( 0.9597 versus 0.9473 for the nearest performer).

10.1109/titb.2010.2052282http://hdl.handle.net/10447/55478