6533b834fe1ef96bd129e093

RESEARCH PRODUCT

Controlling thermal conductance using three-dimensional phononic crystals

Samuli HeiskanenTuomas PuurtinenIlari J. Maasilta

subject

Condensed Matter - Mesoscale and Nanoscale Physicsnanorakenteetlämmön johtuminenCondensed Matter::SuperconductivityPhysicsQC1-999Mesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical scienceslämmön siirtyminenkiteetTP248.13-248.65fononitBiotechnology

description

Controlling thermal transport at the nanoscale is vital for many applications. Previously, it has been shown that this control can be achieved with periodically nanostructured two-dimensional phononic crystals for the case of suspended devices. Here, we show that thermal conductance can also be controlled with three-dimensional phononic crystals, allowing the engineering of the thermal contact of more varied devices without the need for suspension in the future. We show the experimental results obtained at sub-Kelvin temperatures for two different period three-dimensional crystals and for a bulk control structure. The results show that the conductance can be enhanced with the phononic crystal structures in our geometry. This result cannot be fully explained by the simplest theory taking into account the coherent modification of the phonon band structure, calculated by finite element method simulations. peerReviewed

10.1063/5.0057385https://doaj.org/article/998a95bcbece45aba65b865047c00ffc