6533b834fe1ef96bd129e226

RESEARCH PRODUCT

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

Andreu AndrioJorge EscorihuelaVicente CompañEnrique GiménezArturo Barjola

subject

Materials scienceGeneral Chemical EngineeringComposite numberProton exchange membrane fuel cellEther02 engineering and technologyZeolitic imidazoleate frameworkConductivity010402 general chemistry01 natural sciencesArticlelcsh:ChemistryProton exchange membranechemistry.chemical_compoundSulfonated poly(ether ether ketone)proton conductionProton transportCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAGeneral Materials ScienceCompostos organometàl·licssulfonated poly(ether ether ketone)021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyElectroquímicaMembraneChemical engineeringchemistrylcsh:QD1-999zeolitic imidazoleate frameworkMAQUINAS Y MOTORES TERMICOS0210 nano-technologyZeolitic imidazolate frameworkProton conductionproton exchange membrane

description

The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite membranes than for SPEEK, and that of the SPEEK/ZMix membrane was higher than those for SPEEK/Z8 and SPEEK/Z67, respectively. This behavior turns out to be more evident as the temperature increases: the conductivity of the SPEEK/ZMix was 8.5 &times

10.3390/nano8121042http://dx.doi.org/10.3390/nano8121042