6533b834fe1ef96bd129e236

RESEARCH PRODUCT

Maximal Operators with Respect to the Numerical Range

Rosario Corso

subject

Strongly continuous semi-groupsPure mathematicsCayley transformSesquilinear form01 natural sciencesSettore MAT/05 - Analisi MatematicaMaximal operator0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryNumerical rangeMathematics47A20 47A12 47B44 47A07Resolvent setApplied Mathematics010102 general mathematicsRegular polygonOperator theoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational MathematicsComputational Theory and MathematicsBounded functionDissipative systemSectorStrip010307 mathematical physicsNumerical range

description

Let $\mathfrak{n}$ be a nonempty, proper, convex subset of $\mathbb{C}$. The $\mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $\mathfrak{n}$ and are maximal with this property. Typical examples of these are the maximal symmetric (or accretive or dissipative) operators, the associated to some sesquilinear forms (for instance, to closed sectorial forms), and the generators of some strongly continuous semi-groups of bounded operators. In this paper the $\mathfrak{n}$-maximal operators are studied and some characterizations of these in terms of the resolvent set are given.

https://doi.org/10.1007/s11785-018-0805-6