6533b834fe1ef96bd129e2ed
RESEARCH PRODUCT
An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains during Sea Urchin Development
Fabrizio GianguzzaMaria Antonietta RagusaAldo NicosiaSalvatore CostaAngela Cuttittasubject
0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription Factorsdescription
In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs), was identified as responsible for proper gene expression. An enhancer role was ascribed to ICR1 and ICR2, while ICR3 exerted a pivotal role in basal expression, restricting Tuba1a expression to the proper territories of the embryo. Additionally, the mutation of the forkhead box consensus sequence binding site in ICR3 prevented Pl-Tuba1a expression.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-31 | PLOS ONE |