6533b835fe1ef96bd129ed2e

RESEARCH PRODUCT

A numerical approach to Blow-up issues for dispersive perturbations of Burgers' equation

Jean-claude SautChristian Klein

subject

Mathematical analysisMathematics::Analysis of PDEsStatistical and Nonlinear PhysicsNumerical Analysis (math.NA)Condensed Matter PhysicsBurgers' equationDispersionless equationNonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics - Analysis of PDEsFOS: MathematicsMathematics - Numerical AnalysisFinite timeNonlinear Sciences::Pattern Formation and SolitonsMathematicsAnalysis of PDEs (math.AP)

description

We provide a detailed numerical study of various issues pertaining to the dynamics of the Burgers equation perturbed by a weak dispersive term: blow-up in finite time versus global existence, nature of the blow-up, existence for "long" times, and the decomposition of the initial data into solitary waves plus radiation. We numerically construct solitons for fractionary Korteweg-de Vries equations.

10.1016/j.physd.2014.12.004http://arxiv.org/abs/1401.1390