6533b835fe1ef96bd129ed52
RESEARCH PRODUCT
Strategies for numerical simulation of linear friction welding of metals: a review
Gianluca BuffaLivan Fratinisubject
010302 applied physicsFEMWork (thermodynamics)Materials scienceComputer simulationNumerical analysiMechanical EngineeringMechanical engineering02 engineering and technologyWelding021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing EngineeringFinite element methodMaterial flowlaw.inventionReciprocating motionlawResidual stress0103 physical sciencesFriction welding0210 nano-technologyLinear friction weldingdescription
Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, material flow, axial shortening and residual stress. Major issues arising due to the complexity of the process are discussed, highlighting strengths and weaknesses of each approach.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-10 | Production Engineering |