6533b835fe1ef96bd129f374

RESEARCH PRODUCT

Rough Set Algebras as Description Domains

Jānis Cīrulis

subject

Discrete mathematicsAlgebra and Number TheoryA domainSpace formInversion (discrete mathematics)Theoretical Computer ScienceInterior algebraComputational Theory and MathematicsRough setField of setsStone's representation theorem for Boolean algebrasAxiomInformation SystemsMathematics

description

Study of the so called knowledge ordering of rough sets was initiated by V.W. Marek and M. Truszczynski at the end of 90-ies. Under this ordering, the rough sets of a fixed approximation space form a domain in which every set ↓ is a Boolean algebra. In the paper, an additional operation inversion on rough set domains is introduced and an abstract axiomatic description of obtained algebras of rough set is given. It is shown that the resulting class of algebras is essentially different from those traditional in rough set theory: it is not definable, for instance, in the class of regular double Stone algebras, and conversely.

https://doi.org/10.3233/fi-2009-0003