The diamond partial order for strong Rickart rings
The diamond partial order has been first introduced for matrices, and then discussed also in the general context of *-regular rings. We extend this notion to Rickart rings, and state various properties of the diamond order living on the so-called strong Rickart rings. In particular, it is compared with the weak space preorder and the star order; also existence of certain meets and joins under diamond order is discussed.
Extending the star order to Rickart rings
Star partial order was initially introduced for semigroups and rings with (proper) involution. In particular, this order has recently been studied on Rickart *-rings. It is known that the star order in such rings can be characterized by conditions not involving involution explicitly. Owing to these characterizations, the order can be extended to certain special Rickart rings named strong in the paper; this extension is the objective of the paper. The corresponding order structure of strong Rickart rings is studied more thoroughly. In particular, the most significant lattice properties of star-ordered Rickart *-rings are successfully transferred to strong Rickart rings; also several new resu…
The Hermitian part of a Rickart involution ring, I
Rickart *-rings may be considered as a certain abstraction of the rings B(H) of bounded linear operators of a Hilbert space H. In 2006, S. Gudder introduced and studied a certain ordering (called the logical order) of self-adjoint Hilbert space operators; the set S(H) of these operators, which is a partial ring, may be called the Hermitian part of B(H). The new order has been further investigated also by other authors. In this first part of the paper, an abstract analogue of the logical order is studied on certain partial rings that approximate the Hermitian part of general *-rings; the special case of Rickart *-rings is postponed to the next part.
Relatively Orthocomplemented Skew Nearlattices in Rickart Rings
AbstractA class of (right) Rickart rings, called strong, is isolated. In particular, every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R admits a binary operation which turns R into a right normal band having an upper bound property with respect to its natural order ≤; such bands are known as right normal skew nearlattices. The poset (R, ≤) is relatively orthocomplemented; in particular, every initial segment in it is orthomodular.The order ≤ is actually a version of the so called right-star order. The one-sided star orders are well-investigated for matrices and recently have been generalized to bounded linear Hilbert space operators and to abstract Ric…
Quasi-decompositions and quasidirect products of Hilbert algebras
Abstract A quasi-decomposition of a Hilbert algebra A is a pair (C, D) of its subalgebras such that (i) every element a ∈ A is a meet c ∧ d with c ∈ C, d ∈ D, where c and d are compatible (i.e., c → d = c → (c ∧ d)), and (ii) d → c = c (then c is uniquely defined). Quasi-decompositions are intimately related to the so-called triple construction of Hilbert algebras, which we reinterpret as a construction of quasidirect products. We show that it can be viewed as a generalization of the semidirect product construction, that quasidirect products has a certain universal property and that they can be characterised in terms of short exact sequences. We also discuss four classes of Hilbert algebras…
Rough Set Algebras as Description Domains
Study of the so called knowledge ordering of rough sets was initiated by V.W. Marek and M. Truszczynski at the end of 90-ies. Under this ordering, the rough sets of a fixed approximation space form a domain in which every set ↓ is a Boolean algebra. In the paper, an additional operation inversion on rough set domains is introduced and an abstract axiomatic description of obtained algebras of rough set is given. It is shown that the resulting class of algebras is essentially different from those traditional in rough set theory: it is not definable, for instance, in the class of regular double Stone algebras, and conversely.