0000000000046708

AUTHOR

Jānis Cīrulis

0000-0002-1933-9018

showing 7 related works from this author

The diamond partial order for strong Rickart rings

2016

The diamond partial order has been first introduced for matrices, and then discussed also in the general context of *-regular rings. We extend this notion to Rickart rings, and state various properties of the diamond order living on the so-called strong Rickart rings. In particular, it is compared with the weak space preorder and the star order; also existence of certain meets and joins under diamond order is discussed.

Algebra and Number TheoryMathematics::Rings and Algebras010102 general mathematicsPreorderOrder (ring theory)JoinsDiamondContext (language use)010103 numerical & computational mathematicsState (functional analysis)engineering.materialStar (graph theory)Space (mathematics)01 natural sciencesCombinatoricsengineering0101 mathematicsMathematicsLinear and Multilinear Algebra
researchProduct

Extending the star order to Rickart rings

2015

Star partial order was initially introduced for semigroups and rings with (proper) involution. In particular, this order has recently been studied on Rickart *-rings. It is known that the star order in such rings can be characterized by conditions not involving involution explicitly. Owing to these characterizations, the order can be extended to certain special Rickart rings named strong in the paper; this extension is the objective of the paper. The corresponding order structure of strong Rickart rings is studied more thoroughly. In particular, the most significant lattice properties of star-ordered Rickart *-rings are successfully transferred to strong Rickart rings; also several new resu…

CombinatoricsAlgebra and Number TheoryMathematics::Commutative Algebra010201 computation theory & mathematicsMathematics::Rings and AlgebrasOrder structureLattice properties010103 numerical & computational mathematics0102 computer and information sciences0101 mathematics01 natural sciencesMathematicsLinear and Multilinear Algebra
researchProduct

The Hermitian part of a Rickart involution ring, I

2014

Rickart *-rings may be considered as a certain abstraction of the rings B(H) of bounded linear operators of a Hilbert space H. In 2006, S. Gudder introduced and studied a certain ordering (called the logical order) of self-adjoint Hilbert space operators; the set S(H) of these operators, which is a partial ring, may be called the Hermitian part of B(H). The new order has been further investigated also by other authors. In this first part of the paper, an abstract analogue of the logical order is studied on certain partial rings that approximate the Hermitian part of general *-rings; the special case of Rickart *-rings is postponed to the next part.

Involution (mathematics)Discrete mathematicsPure mathematicsMathematics::Commutative AlgebraGeneral MathematicsLinear operatorsHilbert spaceHermitian matrixsymbols.namesakeBounded functionsymbolsSpecial caseSelf-adjoint operatorMathematicsActa et Commentationes Universitatis Tartuensis de Mathematica
researchProduct

Relatively Orthocomplemented Skew Nearlattices in Rickart Rings

2015

AbstractA class of (right) Rickart rings, called strong, is isolated. In particular, every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R admits a binary operation which turns R into a right normal band having an upper bound property with respect to its natural order ≤; such bands are known as right normal skew nearlattices. The poset (R, ≤) is relatively orthocomplemented; in particular, every initial segment in it is orthomodular.The order ≤ is actually a version of the so called right-star order. The one-sided star orders are well-investigated for matrices and recently have been generalized to bounded linear Hilbert space operators and to abstract Ric…

Discrete mathematicsrestrictive semigroupskew nearlatticelcsh:MathematicsGeneral MathematicsMathematics::Rings and AlgebrasSkewlcsh:QA1-939right normal bandright-star orderrelatively orthocomplemented posetOrthogonalityorthogonalityRickart ringMathematicsDemonstratio Mathematica
researchProduct

Quasi-decompositions and quasidirect products of Hilbert algebras

2021

Abstract A quasi-decomposition of a Hilbert algebra A is a pair (C, D) of its subalgebras such that (i) every element a ∈ A is a meet c ∧ d with c ∈ C, d ∈ D, where c and d are compatible (i.e., c → d = c → (c ∧ d)), and (ii) d → c = c (then c is uniquely defined). Quasi-decompositions are intimately related to the so-called triple construction of Hilbert algebras, which we reinterpret as a construction of quasidirect products. We show that it can be viewed as a generalization of the semidirect product construction, that quasidirect products has a certain universal property and that they can be characterised in terms of short exact sequences. We also discuss four classes of Hilbert algebras…

Pure mathematicsHilbert algebraGeneral MathematicsMathematicsMathematica Slovaca
researchProduct

Rough Set Algebras as Description Domains

2009

Study of the so called knowledge ordering of rough sets was initiated by V.W. Marek and M. Truszczynski at the end of 90-ies. Under this ordering, the rough sets of a fixed approximation space form a domain in which every set ↓ is a Boolean algebra. In the paper, an additional operation inversion on rough set domains is introduced and an abstract axiomatic description of obtained algebras of rough set is given. It is shown that the resulting class of algebras is essentially different from those traditional in rough set theory: it is not definable, for instance, in the class of regular double Stone algebras, and conversely.

Discrete mathematicsAlgebra and Number TheoryA domainSpace formInversion (discrete mathematics)Theoretical Computer ScienceInterior algebraComputational Theory and MathematicsRough setField of setsStone's representation theorem for Boolean algebrasAxiomInformation SystemsMathematicsFundamenta Informaticae
researchProduct

On existence of joins and meets under the star order in strong Rickart rings

2021

Pure mathematicsAlgebra and Number TheoryOrder (business)JoinsStar (graph theory)MathematicsLinear and Multilinear Algebra
researchProduct