6533b835fe1ef96bd129f3c1

RESEARCH PRODUCT

Baer cones in finite projective spaces

Michael Huber

subject

CombinatoricsAlgebraDimension (vector space)Cone (topology)Projective spaceOrder (ring theory)Geometry and TopologyLinear subspaceSubspace topologySquare (algebra)Mathematics

description

Let R and V be two skew subspaces with dimensions r and v of P=PG(d,q). If q is a square, then there is a Baer subspace V* of V, i.e. a subspace of dimension v and order √q. We call the set C(R,V*)=\(\mathop \cup \limits_p \), where the union is taken over all PeV*, aBaer cone oftype (r,v).

https://doi.org/10.1007/bf01221941