6533b835fe1ef96bd129f512
RESEARCH PRODUCT
Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains.
Aurélie RieuRomain BriandetOlivier HabimanaJean GuzzoDominique GarmynDominique GarmynPascal PiveteauPascal Piveteausubject
Image ProcessingMESH : Analysis of Variance[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyMESH : Green Fluorescent Proteinsmedicine.disease_causeMESH: Listeria monocytogenesApplied Microbiology and BiotechnologyBacterial Adhesionlaw.inventionGreen fluorescent proteinPlasmidComputer-AssistedlawGenes ReporterImage Processing Computer-AssistedMESH : Bacterial ProteinsMESH: Microscopy ConfocalPathogenMESH: Bacterial Proteins2. Zero hunger0303 health sciencesMicroscopyMicroscopy ConfocalPhotobleachingEcologybiologyMESH: KineticsMESH : Genes ReporterMESH: Image Processing Computer-AssistedMESH : BiofilmsConfocalMESH : KineticsMESH: PhotobleachingMESH : Image Processing Computer-AssistedBiotechnologyPlasmidsMESH : Bacterial AdhesionConfocalGreen Fluorescent ProteinsMESH: BiofilmsMESH : PhotobleachingMicrobiology03 medical and health sciencesMESH: Gene Expression ProfilingMESH: Green Fluorescent ProteinsListeria monocytogenesBacterial ProteinsConfocal microscopyMESH: PlasmidsMESH: Analysis of VariancemedicineMESH: Bacterial AdhesionMESH : Microscopy ConfocalReporter030304 developmental biologyAnalysis of Variance030306 microbiologyMESH : Gene Expression ProfilingGene Expression ProfilingMESH: Genes ReporterBiofilmbiochemical phenomena metabolism and nutritionbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyListeria monocytogenesCulture MediaKineticsGenesMESH : PlasmidsBiofilmsMESH: Culture MediaFood MicrobiologyMESH : Culture MediaMESH : Listeria monocytogenesBacteriaFood Sciencedescription
ABSTRACT Listeria monocytogenes is a food pathogen that can attach on most of the surfaces encountered in the food industry. Biofilms are three-dimensional microbial structures that facilitate the persistence of pathogens on surfaces, their resistance toward antimicrobials, and the final contamination of processed goods. So far, little is known about the structural dynamics of L. monocytogenes biofilm formation and its regulation. The aims of this study were, by combining genetics and time-lapse laser-scanning confocal microscopy (LSCM), (i) to characterize the structural dynamics of L. monocytogenes EGD-e sessile growth in two nutritional environments (with or without a nutrient flow), and (ii) to evaluate the possible role of the L. monocytogenes agr system during biofilm formation by tracking the spatiotemporal fluorescence expression of a green fluorescent protein (GFP) reporter system. In the absence of nutrient flow (static conditions), unstructured biofilms composed of a few layers of cells that covered the substratum were observed. In contrast, when grown under dynamic conditions, L. monocytogenes EGD-e biofilms were highly organized. Indeed, ball-shaped microcolonies were surrounded by a network of knitted chains. The spatiotemporal tracking of fluorescence emitted by the GFP reporter system revealed that agr expression was barely detectable under static conditions, but it progressively increased during 40 h under dynamic conditions. Moreover, spatial analysis revealed that agr was expressed preferentially in cells located outside the microcolonies. Finally, the in-frame deletion of agrA , which encodes a transcriptional regulator, resulted in a decrease in initial adherence without affecting the subsequent biofilm development.
year | journal | country | edition | language |
---|---|---|---|---|
2008-07-01 | Applied and environmental microbiology |