6533b835fe1ef96bd129f533

RESEARCH PRODUCT

Scalable implementation of dependence clustering in Apache Spark

Elena Ivannikova

subject

ta113ta213Apache SparkComputer sciencedatasetsCorrelation clusteringdata miningcomputer.software_genrealgorithmsSpectral clusteringComputational sciencedependence clusteringData stream clusteringCURE data clustering algorithmScalabilitySpark (mathematics)algoritmitCanopy clustering algorithmData miningtiedonlouhintaCluster analysisclustering algorithmscomputerdata processingtietojenkäsittely

description

This article proposes a scalable version of the Dependence Clustering algorithm which belongs to the class of spectral clustering methods. The method is implemented in Apache Spark using GraphX API primitives. Moreover, a fast approximate diffusion procedure that enables algorithms of spectral clustering type in Spark environment is introduced. In addition, the proposed algorithm is benchmarked against Spectral clustering. Results of applying the method to real-life data allow concluding that the implementation scales well, yet demonstrating good performance for densely connected graphs. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201712134660