6533b835fe1ef96bd129f53a

RESEARCH PRODUCT

Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−ı) at intermediate temperatures.

Sandrine RicoteSandrine RicoteM.c. Marco De LucasGilles CabocheN. Bonanos

subject

High temperature proton conductorAnalytical chemistryEnergy Engineering and Power TechnologyMineralogy02 engineering and technologyConductivity010402 general chemistry01 natural sciencessymbols.namesakeIonic conductivityProton transportIonic conductivityElectrical measurementsBarium zirconateElectrical and Electronic EngineeringPhysical and Theoretical ChemistryProton conductorPerovskite (structure)Renewable Energy Sustainability and the EnvironmentChemistryBarium ceratePartial pressure021001 nanoscience & nanotechnology0104 chemical sciencesElectronic conductivityPhase transitionssymbols0210 nano-technologyRaman spectroscopy

description

International audience; The perovskite BaCe(0.9−x)ZrxY0.1O(3−ı) is prepared by solid-state reaction at 1400 ◦C and sintering at 1700 ◦C. It is characterised using X-ray diffraction, Raman spectroscopy and electrical measurements. A distortion fromthe cubic structure at roomtemperature is noticeable in the Raman spectra for 0.2 < x < 0.8, but not in the X-ray diffraction patterns. This work points out the rhombohedral nature of this distortion. Phase transitions are studied up to 600 ◦C. The direct current conductivity is measured as a function of oxygen partial pressure, and at a water vapour partial pressure of 0.015 atm. The total conductivity is resolved into an ionic and a p-type component using a fitting procedure appropriate to the assumed defect model. The first contribution is useful for estimating the proton transport number, while the value of the second one should not be too high not to deteriorate the electrodes performance.

https://hal.archives-ouvertes.fr/hal-00418829