6533b835fe1ef96bd129f6a5
RESEARCH PRODUCT
Electron Induced Massive Dynamics of Magnetic Domain Walls
Hilary M. HurstHilary M. HurstTero T. HeikkiläVictor Galitskisubject
PhysicsMagnetic domainCondensed Matter - Mesoscale and Nanoscale PhysicsBare massDegrees of freedom (physics and chemistry)Equations of motionFOS: Physical sciences02 engineering and technologyElectron021001 nanoscience & nanotechnologyThermal conduction01 natural sciencesHysteresisClassical mechanicsDomain wall (magnetism)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologydescription
We study the dynamics of domain walls (DWs) in a metallic, ferromagnetic nanowire. We develop a Keldysh collective coordinate technique to describe the effect of conduction electrons on rigid magnetic structures. The effective Lagrangian and Langevin equations of motion for a DW are derived. The DW dynamics is described by two collective degrees of freedom: position and tilt-angle. The coupled Langevin equations therefore involve two correlated noise sources, leading to a generalized fluctuation-dissipation theorem (FDT). The DW response kernel due to electrons contains two parts: one related to dissipation via FDT, and another `inertial' part. We prove that the latter term leads to a mass for both degrees of freedom, even though the intrinsic bare mass is zero. The electron-induced mass is present even in a clean system without pinning or specifically engineered potentials. The resulting equations of motion contain rich dynamical solutions and point toward a new way to control domain wall motion in metals via the electronic system properties. We discuss two observable consequences of the mass, hysteresis in the DW dynamics and resonant response to ac current.
year | journal | country | edition | language |
---|---|---|---|---|
2019-08-06 |