6533b835fe1ef96bd129fdd2

RESEARCH PRODUCT

Fixed point theory for 1-set contractive and pseudocontractive mappings

Jesús Garcia-falsetOmar Muñiz-pérez

subject

Discrete mathematicsComputational MathematicsNonlinear systemIterative methodApplied MathematicsBanach spaceFixed-point theoremUniquenessFixed pointFixed-point propertyCoincidence pointMathematics

description

The purpose of this paper is to study the existence and uniqueness of fixed point for a class of nonlinear mappings defined on a real Banach space, which, among others, contains the class of separate contractive mappings, as well as to see that an important class of 1-set contractions and of pseudocontractions falls into this type of nonlinear mappings. As a particular case, we give an iterative method to approach the fixed point of a nonexpansive mapping. Later on, we establish some fixed point results of Krasnoselskii type for the sum of two nonlinear mappings where one of them is either a 1-set contraction or a pseudocontraction and the another one is completely continuous, which extend or complete previous results. In the last section, we apply such results to study the existence of solutions to a nonlinear integral equation.

https://doi.org/10.1016/j.amc.2012.12.079