6533b835fe1ef96bd129fff1

RESEARCH PRODUCT

OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome

Teunis J. P. Van DamAngélique BoleEmilie BaudeletChristel Thauvin-robinetJean-baptiste RivièreJean-paul BorgOlivier RosnetAnge-line BruelMelissa Lo ScalzoDaniel IsnardonBrunella FrancoPaul KuentzMartijn A. HuynenDaniel BirnbaumLaurence FaivreVéronique ChevrierStéphane AudebertFrédérique LemboLydie BurglenJulien Thevenon

subject

0301 basic medicineCentriolecell-cycle progressionGene Expressionmedicine.disease_causeCiliopathieshuman-disease genemolecular characterizationbbs proteinsGenetics (clinical)Conserved SequenceCentriolesGeneticsMutationCiliumCiliary transition zoneMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]General MedicineOrofaciodigital Syndromes3. Good healthcentriolar satellitesmultiple sequence alignmentbasal body dockingFemaleMicrotubule-Associated ProteinsProtein BindingHeterozygoteMolecular Sequence DataBiology03 medical and health sciencesIntraflagellar transportCiliogenesis[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAmino Acid SequenceCiliaMolecular BiologyCentrosomeintraflagellar transportBase SequenceInfant NewbornProteins030104 developmental biologyCentrosomeMutationciliary transition zoneSequence Alignment[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyciliogenesis

description

Item does not contain fulltext Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.

10.1093/hmg/ddv488https://doi.org/10.1093/hmg/ddv488