6533b836fe1ef96bd12a06c1

RESEARCH PRODUCT

Étude biochimique des récepteurs aux goûts sucré et umami : Rôle des domaines N-terminaux et caractérisation d'un inhibiteur spécifique, la gurmarine

Maud Sigoillot

subject

[SDV.AEN] Life Sciences [q-bio]/Food and NutritionTASTEBIOCHIMIEUMAMIRECEPTORRÉCEPTEURINHIBITORSUCRÉGOÛTBIOCHEMISTRYINHIBITEUR[SDV.AEN]Life Sciences [q-bio]/Food and NutritionSWEET

description

The sweet taste receptor is a heterodimer composed of two subunits called T1R2 and T1R3 whereas the T1R1 and the T1R3 subunits form a heterodimeric receptor for umami taste (the savory taste of monosodium glutamate). Each subunit belongs to the class C of G protein-coupled receptors (GPCRs) and is constituted by a large extracellular Nterminal domain (NTD) linked to the transmembrane domain by a cysteine-rich region. The NTD is composed of two lobes separated by a cleft in which ligands bind. T1R1- and T1R2-NTDs are able to bind sweeteners and umami compounds respectively and undergo ligand-dependent conformational changes (Zhang et al., 2008 ; Nie et al., 2005). However, the relative contribution of the two subunits to the heterodimeric receptor function remains largely unknown. To study the binding specificity of each subunit, a large amount of purified NTDs is suitable for biochemical and structural studies. To accomplish this goal, we expressed high level of T1R1- and T1R2-NTD as insoluble aggregated proteins (inclusion bodies), using Escherichia coli. The proteins were solubilized and in vitro refolded using suitable buffer and additives. The soluble proteins were then purified and characterized using electrophoresis, gel filtration, fluorescence spectroscopy and circular dichroism. The functionality of T1R1- and T1R2-NTD was measured the using isothermal microcalorimetry. Our data showed that the proteins are properly refolded and able to bind sweet or umami compounds with physiological relevant affinities. In summary, our expression system will allow large-scale production of active T1R1- and T1R2-NTD suitable for structural and functional studies. In addition to this work, we have studied a 35 residue polypeptide named gurmarin, well known to selectively inhibit responses to sweet substances without affecting responses to other basic taste stimuli, such as NaCl, HCl, and quinine in rodents. To further understand the structural basis of gurmarin recognition by T1R2-T1R3 receptor, we developed for the first time the heterologous expression of gurmarin using the methylotrophic yeast Pichia pastoris. This system allowed the expression of large quantities of recombinant gurmarin. The structural properties of gurmarin were checked by circular dichroism and nuclear magnetic resonance. We generated six mutants with single amino acids substitutions in the putative site of interaction between gurmarin and the rodent sweet taste receptor, using site-directed mutagenesis. In collaboration, the biological activity of was confirmed using a cell-based assay based on expression of rat T1R2-T1R3. Thanks to various combinations of human and rat T1R2-T1R3 chimeras, we showed that NTD of rat T1R3 is the major determinant of gurmarin’s inhibition.

https://hal.inrae.fr/tel-02809062