6533b836fe1ef96bd12a07bf

RESEARCH PRODUCT

Computer simulations of critical phenomena and phase behaviour of fluids

Kurt Binder

subject

Particle numberChemistryCritical phenomenaMonte Carlo methodBiophysicsStatistical mechanicsCondensed Matter PhysicsMolecular dynamicsLattice (order)Ising modelStatistical physicsPhysical and Theoretical ChemistryMolecular BiologyScaling

description

Computer simulation techniques such as Monte Carlo (MC) and Molecular Dynamics (MD) methods yield numerically exact information (apart from statistical errors) on model systems of classical statistical mechanics. However, a systematic limitation is the restriction to a finite (and often rather small) particle number N (or box linear dimension L, respectively). This limitation is particularly restrictive near critical points (due to the divergence of the correlation length of the order parameter) and for the study of phase equilibria (possibly involving interfaces, droplets, etc.). Starting out with simple lattice gas (Ising) models, finite size scaling analyses have been developed to overcome this limitation. These techniques work for both simple Lennard-Jones fluids and their mixtures, including generalizations to approximate models for quadrupolar fluids such as carbon dioxide, benzene etc. and various mixtures, whose phase behaviour can be predicted. A combination of MC and MD allows the study of dynam...

https://doi.org/10.1080/00268976.2010.495734