6533b836fe1ef96bd12a0869
RESEARCH PRODUCT
Stability of the fixed point property in Hilbert spaces
Eva M. Mazcuñán-navarroEva M. Mazcuñán-navarrosubject
Pure mathematicsIsolated pointHilbert manifoldApproximation propertyApplied MathematicsGeneral MathematicsInfinite-dimensional vector functionMathematical analysisBanach manifoldRigged Hilbert spaceFixed-point propertyReproducing kernel Hilbert spaceMathematicsdescription
In this paper we prove that if X X is a Banach space whose Banach-Mazur distance to a Hilbert space is less than 5 + 17 2 \sqrt {\frac {5+\sqrt {17}}{2}} , then X X has the fixed point property for nonexpansive mappings.
year | journal | country | edition | language |
---|---|---|---|---|
2005-08-16 | Proceedings of the American Mathematical Society |