0000000000328788

AUTHOR

Eva M. Mazcuñán-navarro

showing 5 related works from this author

The Ptolemy and Zbăganu constants of normed spaces

2010

Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…

CombinatoricsInner product spaceApplied MathematicsProduct (mathematics)Mathematical analysisBanach spaceFixed-point theoremSpace (mathematics)Constant (mathematics)Fixed-point propertyAnalysisNormed vector spaceMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

The Dunkl–Williams constant, convexity, smoothness and normal structure

2008

Abstract In this paper we exhibit some connections between the Dunkl–Williams constant and some other well-known constants and notions. We establish bounds for the Dunkl–Williams constant that explain and quantify a characterization of uniformly nonsquare Banach spaces in terms of the Dunkl–Williams constant given by M. Baronti and P.L. Papini. We also study the relationship between Dunkl–Williams constant, the fixed point property for nonexpansive mappings and normal structure.

Smoothness (probability theory)Applied MathematicsMathematical analysisStructure (category theory)Banach spaceMathematics::Classical Analysis and ODEsCharacterization (mathematics)Fixed-point propertyJames constantSmoothnessNormal structureConvexityPhysics::History of PhysicsDunkl–Williams constantConvexityMathematics::Quantum AlgebraConstant (mathematics)Mathematics::Representation TheoryAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings

2006

Abstract It is shown that if the modulus Γ X of nearly uniform smoothness of a reflexive Banach space satisfies Γ X ′ ( 0 ) 1 , then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsUniformly nonsquare spacesApproximation propertyEberlein–Šmulian theoremBanach spaceNonexpansive mappingsUniformly convex spaceBanach manifoldFixed-point propertyNearly uniform smoothnessFixed pointsReflexive spaceLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

Stability of the fixed point property in Hilbert spaces

2005

In this paper we prove that if X X is a Banach space whose Banach-Mazur distance to a Hilbert space is less than 5 + 17 2 \sqrt {\frac {5+\sqrt {17}}{2}} , then X X has the fixed point property for nonexpansive mappings.

Pure mathematicsIsolated pointHilbert manifoldApproximation propertyApplied MathematicsGeneral MathematicsInfinite-dimensional vector functionMathematical analysisBanach manifoldRigged Hilbert spaceFixed-point propertyReproducing kernel Hilbert spaceMathematicsProceedings of the American Mathematical Society
researchProduct

Banach spaces which are r-uniformly noncreasy

2003

Abstract We consider a family of spaces wider than UNC spaces introduced by Prus, and we give some fixed point results in the setting of these spaces.

Pure mathematicsApplied MathematicsMathematical analysisUniformly convex spaceBanach manifoldSpace (mathematics)Quantitative Biology::GenomicsFréchet spaceLocally convex topological vector spaceInterpolation spaceBirnbaum–Orlicz spaceLp spaceAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct