6533b836fe1ef96bd12a08fd

RESEARCH PRODUCT

In Silico Conformational Features of Botulinum Toxins A1 and E1 According to Intraluminal Acidification

Grazia CottoneLetizia ChiodoLuca MaraglianoMichel-robert PopoffChristine Rasetti-escargueilEmmanuel LemichezThérèse E. Malliavin

subject

<i>Clostridium botulinum</i>; botulinum toxin; molecular dynamics; residue protonation; homology modeling[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM][SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]Health Toxicology and Mutagenesismolecular dynamichomology modelingresidue protonation[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsHydrogen-Ion ConcentrationToxicology[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)molecular dynamics[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsGangliosidesSolventsClostridium botulinumbotulinum toxinBotulinum Toxins Type A[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM][INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]

description

International audience; Although botulinum neurotoxins (BoNTs) are among the most toxic compounds found in nature, their molecular mechanism of action is far from being elucidated. A key event is the conformational transition due to acidification of the interior of synaptic vesicles, leading to translocation of the BoNT catalytic domain into the neuronal cytosol. To investigate these conformational variations, homology modeling and atomistic simulations are combined to explore the internal dynamics of the sub-types BoNT/A1 (the most-used sub-type in medical applications) and BoNT/E1 (the most kinetically efficient sub-type). This first simulation study of di-chain BoNTs in closed and open states considers the effects of both neutral and acidic pH. The conformational mobility is driven by domain displacements of the ganglioside-binding site in the receptor binding domain, the translocation domain (HCNT) switch, and the belt α-helix, which present multiple conformations, depending on the primary sequence and the pH. Fluctuations of the belt α-helix are observed for closed conformations of the toxins and at acidic pH, while patches of more solvent-accessible residues appear under the same conditions in the core translocation domain HCNT. These findings suggest that, during translocation, the higher mobility of the belt could be transmitted to HCNT, leading to the favorable interaction of HCNT residues with the non-polar membrane environment.

10.3390/toxins14090644https://hal.science/hal-03782462/document