6533b836fe1ef96bd12a0966

RESEARCH PRODUCT

Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

Timo SajavaaraJaakko Julin

subject

010302 applied physicsNuclear and High Energy PhysicsERDASpectrometerta114Physics::Instrumentation and DetectorsChemistryDetectortime-of-flight01 natural sciencesNuclear physicsPelletronElastic recoil detectionTime of flightvetyIonizationhydrogen0103 physical sciencesIonization chamber010306 general physicsInstrumentationBeam (structure)

description

Abstract Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or Δ E - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyvaskyla ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

10.1016/j.nimb.2017.02.039http://juuli.fi/Record/0285215817