6533b836fe1ef96bd12a09c2

RESEARCH PRODUCT

Orbital Rotations induced by Charges of Polarons and Defects in Doped Vanadates

Andrzej M. OleśAndrzej M. OleśAdolfo AvellaPeter Horsch

subject

FOS: Physical sciences02 engineering and technologyElectronPolaron01 natural sciencesCondensed Matter - Strongly Correlated ElectronsAtomic orbital0103 physical sciencesCoulomb010306 general physicsSpin (physics)Condensed Matter - Statistical MechanicsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Statistical Mechanics (cond-mat.stat-mech)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)Order (ring theory)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologySuperexchangeCharge carrierCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary Astrophysics0210 nano-technology

description

We explore the competiton of doped holes and defects that leads to the loss of orbital order in vanadate perovskites. In compounds such as La$_{1-{\sf x}}$Ca$_{\,\sf x}$VO$_3$ spin and orbital order result from super-exchange interactions described by an extended three-orbital degenerate Hubbard-Hund model for the vanadium $t_{2g}$ electrons. Long-range Coulomb potentials of charged Ca$^{2+}$ defects and $e$-$e$ interactions control the emergence of defect states inside the Mott gap. The quadrupolar components of the Coulomb fields of doped holes induce anisotropic orbital rotations of degenerate orbitals. These rotations modify the spin-orbital polaron clouds and compete with orbital rotations induced by defects. Both mechanisms lead to a mixing of orbitals, and cause the suppression of the asymmetry of kinetic energy in the $C$-type magnetic phase. We find that the gradual decline of orbital order with doping, a characteristic feature of the vanadates, however, has its origin not predominantly in the charge carriers, but in the off-diagonal couplings of orbital rotations induced by the charges of the doped ions.

10.1103/physrevb.103.035129http://arxiv.org/abs/2012.11919