6533b836fe1ef96bd12a1390
RESEARCH PRODUCT
Surface homeomorphisms with zero dimensional singular set
Christian BonattiBoris Kolevsubject
Surface (mathematics)Pure mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Conformal mapDynamical Systems (math.DS)01 natural sciencesKérékjártós theorySet (abstract data type)Totally disconnected spaceRegular homeomorphisms0103 physical sciencesFOS: Mathematics54H20; 57S10; 58FxxRiemann sphereMathematics - Dynamical Systems0101 mathematicsMathematics - General TopologyMathematics010102 general mathematicsGeneral Topology (math.GN)Zero (complex analysis)Applications conformesHomeomorphismHoméomorphismes des surfacesApplications conformes.Transformation (function)Limit set010307 mathematical physicsGeometry and Topology54H20 (Primary) 57S10 (Secondary) 58Fxx (Secondary)Topological conjugacydescription
We prove that if f is an orientation-preserving homeomorphism of a closed orientable surface M whose singular set is totally disconnected, then f is topologically conjugate to a conformal transformation.
year | journal | country | edition | language |
---|---|---|---|---|
1998-12-01 |