6533b836fe1ef96bd12a149d

RESEARCH PRODUCT

THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n)

Pierre-alexandre GieGeorges PinczonRosane Ushirobira

subject

Pure mathematicsAlgebra and Number TheoryConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Applied Mathematics010102 general mathematicsMathematics::Rings and AlgebrasSkewLie superalgebraType (model theory)16. Peace & justice01 natural sciences[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Interpretation (model theory)Identity (mathematics)Mathematics::Quantum Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematics

description

http://www.worldscinet.com/jaa/05/0503/S0219498806001740.html; International audience; Based on Kostant's cohomological interpretation of the Amitsur–Levitzki theorem, we prove a super version of this theorem for the Lie superalgebras osp(1, 2n). We conjecture that no other classical Lie superalgebra can satisfy an Amitsur–Levitzki type super identity. We show several (super) identities for the standard super polynomials. Finally, a combinatorial conjecture on the standard skew supersymmetric polynomials is stated.

10.1142/s0219498806001740https://hal.archives-ouvertes.fr/hal-00438862