6533b836fe1ef96bd12a1533
RESEARCH PRODUCT
Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment
Irena MausAndreas BremgesAlexander SczyrbaDaniel WibbergYvonne StolzeGeizecler TomazettoAndreas SchlüterKatharina Gabriela CibisHelmut KönigJochen BlomAlfred Pühlersubject
0301 basic medicineBioengineeringBiologyApplied Microbiology and BiotechnologyGenomeComparative genome analyses03 medical and health sciencesThermophilic BacteriaGeneGeneticsWhole genome sequencingThermotogaeBacteriaThermophileGeneral Medicinebiology.organism_classification030104 developmental biologyMetagenomicsBiofuelsThermotogaeMetagenomeSugar utilizationGC-contentGenome BacterialBiotechnologyArchaeadescription
The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant. Copyright 2016 Elsevier B.V. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-01 |