6533b836fe1ef96bd12a154f

RESEARCH PRODUCT

Dioxidomolybdenum(VI) and -tungsten(VI) complexes with tripodal amino bisphenolate ligands as epoxidation and oxo-transfer catalysts

Ari LehtonenEbbe NordlanderJörg A. SchachnerNadia C. Mösch-zanettiKamal HossainMatti Haukka

subject

Solid-state chemistrytungstenchemistry.chemical_elementTungsten010402 general chemistry01 natural sciencesMedicinal chemistryepoxysulfoxidationCatalysisInorganic Chemistrychemistry.chemical_compoundEthanolaminemolybdenumBenzoinepoxidationMaterials ChemistryOrganic chemistryoxygen atom transferPhysical and Theoretical Chemistryta116atoms010405 organic chemistryLow activityepoksivolframi0104 chemical sciencesoxotransfer reactionsatomithappichemistryMolybdenummolybdeenioxygen

description

The molybdenum(VI) and tungsten(VI) complexes [MO2(L)] (M = Mo (1), W (2), H2L = bis(2-hydroxy-3,5-di-tert-butybenzyl)morpholinylethylamine) were synthesized and the complexes were used to catalyze oxotransfer reactions, viz. sulfoxidation, epoxidation and benzoin oxidation. For comparison, the same reactions were catalyzed using the known complexes [MO2(L′)] (M = Mo (3), W (4), H2L′ = bis(2-hydroxy-3,5-di-tert-butybenzyl)ethanolamine) and [MO2(L″)] (M = Mo (5), W (6), H2L″ = bis(2-hydroxy-3,5-di-tert-butybenzyl)diethyleneglycolamine). The oxo atom transfer activity between DMSO and benzoin at 120 °C was identical for all studied catalysts. Reasonable catalytic activity was observed for sulfoxidation by the molybdenum complexes, but all tungsten complexes were found to be inactive. Similarly, the molybdenum complex 1 exhibited relatively good epoxidation activity, while the corresponding tungsten complex 2 catalyzed only the epoxidation of cis-cyclooctene with low activity. peerReviewed

10.1016/j.poly.2017.04.036https://doi.org/10.1016/j.poly.2017.04.036