6533b837fe1ef96bd12a1d0c
RESEARCH PRODUCT
Subchronic vortioxetine treatment -but not escitalopram- enhances pyramidal neuron activity in the rat prefrontal cortex.
Pau CeladaConnie SanchezMaurizio RigaVicent Teruel-martíFrancesc Artigassubject
0301 basic medicineAgonistMalegenetic structuresmedicine.drug_classSerotonin reuptake inhibitorAction PotentialsPrefrontal CortexPharmacologyCitalopramSulfidesPartial agonistPiperazines03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicinePremovement neuronal activityAnimalsRats WistarSerotonin transporterPharmacologyVortioxetinebiologyPyramidal CellsAntagonistAntidepressive AgentsRats030104 developmental biologybiology.proteinAntidepressantVortioxetinesense organsPsychologyNeuroscience030217 neurology & neurosurgerySelective Serotonin Reuptake Inhibitorsdescription
Abstract Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT 3 -R, 5-HT 7 -R and 5-HT 1D -R antagonist, 5-HT 1B -R partial agonist, 5-HT 1A -R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p -chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of VOR-containing food. Four groups were implanted with minipumps delivering vehicle or ESC 10 mg/kg·day s.c. The two VOR doses enable occupation by VOR of SERT+5-HT 3 -R and all targets, respectively, and correspond to SERT occupancies in patients treated with 5 and 20 VOR mg/day, respectively. Putative pyramidal neurons (n = 985) were recorded extracellularly in the mPFC of anesthetized rats. Sub-chronic VOR administration (but not ESC) significantly increased neuronal discharge in standard and 5-HT-depleted conditions, with a greater effect of the low VOR dose in standard rats. VOR increased neuronal discharge in infralimbic (IL) and prelimbic (PrL) cortices. Hence, oral VOR doses evoking SERT occupancies similar to those in treated patients increase mPFC neuronal discharge. The effect in 5-HT-depleted rats cannot be explained by an antagonist action of VOR at 5-HT 3 -R and suggests a non-canonical interaction of VOR with 5-HT 3 -R. These effects may underlie the superior pro-cognitive efficacy of VOR compared with SSRIs in animal models.
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-01 | Neuropharmacology |