6533b837fe1ef96bd12a1fac

RESEARCH PRODUCT

Identification of Distributed Systems with Logical Interaction Structure

Simone MartiniAdriano FagioliniAntonio BicchiLaura Giarre

subject

Partial knowledgeTheoretical computer scienceInteraction ruleDistributed computingBinary numberClass (philosophy)Individual dynamicAlgebraic normal formLogical functionAlgebraic normal forms; Binary functions; Cooperating systems; Distributed systems; Individual agent; Individual dynamics; Interaction rules; Interaction structures; Logical functions; Logical maps; Lower approximation; Network structures; Networked systems; Partial knowledge; Real systems; Structure identification; Truth tablesBinary functionSettore ING-INF/04 - AutomaticaLogical mapMathematicsCooperating systemStructure (mathematical logic)Networked systemStructure identificationTruth tablesTruth tableMobile robotReal systemParameter identification problemAlgebraic normal formIdentification (information)Lower approximationInteraction structureIndividual agentDistributed systemNetwork structure

description

This paper focuses on the structure identification problem for a class of networked systems, where the interaction among components or agents is described through logical maps. In particular, agents are heterogeneous cooperating systems, i.e. they may have different individual dynamics and different interaction rules depending on input events. While we assume that the individual agents' dynamics are known, each agent has partial knowledge of the logical map encoding the interaction of another agent with its neighbors. Based on the so-called algebraic normal form for binary functions, we present a technique by which the network structure described by a logical function can be dynamically estimated as its truth table is observed. The estimated map is a lower approximation of the real one, which coincides with it as soon as the truth table is entirely observed. Application of the proposed technique to a real system, where agents are mobile robots whose motion depends on logical conditions on their neighborhood, is finally presented.

10.1109/cdc.2012.6426124http://hdl.handle.net/10447/64388