6533b837fe1ef96bd12a1feb
RESEARCH PRODUCT
Rtp1p Is a Karyopherin-Like Protein Required for RNA Polymerase II Biogenesis
Natalia Gomez-navarroJulio PolainaLorena Peiró-chovaSusana Rodríguez-navarroFrancisco Estruchsubject
Saccharomyces cerevisiae ProteinsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeKaryopherinsBiologyGene Expression Regulation FungalTranscriptional regulationRNA polymerase IProtein Interaction MapsMolecular BiologyRNA polymerase II holoenzymeR2TP complexGeneticsNuclear cap-binding protein complexArticlesCell BiologyPhosphoproteinsUp-RegulationCell biologyNuclear Pore Complex Proteinsbiology.proteinRNA Polymerase IITranscription factor II DCarrier ProteinsGene DeletionSmall nuclear RNATranscription Factorsdescription
The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its binding to the Rpb1p-containing subcomplex. Besides, Rtp1p has a molecular architecture characteristic of karyopherins, composed of HEAT repeats, and is able to interact with phenylalanine-glycine-containing nucleoporins. Our results define Rtp1p as a new component of the RNA pol II biogenesis machinery that plays roles in subunit assembly and likely in transport through the nuclear pore complex.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 |