0000000000021886

AUTHOR

Francisco Estruch

showing 26 related works from this author

In vivo assembly of chromatin on pBR322 sequences cloned into yeast plasmids

1989

Abstract In order to study the in vivo assembly of chromatin on prokaryotic DNA templates, we have transformed yeast cells with plasmids pAJ50 and pRB58, which contain pBR322 sequences. In both cases nucleosomes are assembled in vivo on pBR322 DNA, although the nucleosomes are not homogeneous in size. To explore whether there is any preference for nucleosome assembly along pBR322 sequences, we have used an indirect end labeling method. The results indicate that most nucleosomes are placed at random on pBR322, although the probability for histone octamers to interact with some short regions is somewhat reduced. These regions coincide with sequences in which the frequency distribution of nucl…

biologyNucleosome assemblyRestriction MappingSaccharomyces cerevisiaeSaccharomyces cerevisiaeTemplates GeneticMolecular cloningbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinCell biologyBlotting SouthernRestriction mapHistonePlasmidDNA Transposable Elementsbiology.proteinNucleosomeCloning MolecularMolecular BiologyPlasmidsPlasmid
researchProduct

Chromatin structure of the 5′ flanking region of the yeastLEU2 gene

1989

The chromatin structure of theLEU2 gene and its flanks has been studied by means of nuclease digestion, both with micrococcal nuclease and DNase I. The gene is organized in an array of positioned nucleosomes. Within the promoter region, the nucleosome positioning places the regulatory sequences, putative TATA box and upstream activator sequence outside the nucleosomal cores. The tRNA3 Leu gene possesses a characteristic structure and is protected against nucleases. Most of the 5′ flank is sensitive to DNase I digestion, although no clear hypersensitive sites were found. The chromatin structure is independent of either the transcriptional state of the gene or the chromosomal or episomal loca…

biologyGenes Fungal5' flanking regionSaccharomyces cerevisiaeTATA BoxMolecular biologyChromatinChromatin3-Isopropylmalate DehydrogenaseAlcohol OxidoreductasesGeneticsbiology.proteinDeoxyribonuclease IMicrococcal NucleaseNucleosomeDNase I hypersensitive siteDeoxyribonuclease IMolecular BiologyHypersensitive siteAllelesChIA-PETMicrococcal nucleaseMolecular and General Genetics MGG
researchProduct

Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

2016

BACKGROUND: The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. RESULTS: In order to cast light on the molecular func…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA polymerase IISaccharomyces cerevisiaeGenètica molecularNC203 medical and health sciencesSaccharomycesTranscripció genèticaGeneticsTATACryptic transcriptRNA polymerase II holoenzymeGeneticsbiologyGeneral transcription factorTATA-Box Binding ProteinTranscription initiationPhosphoproteinsTATA-Box Binding ProteinYeastRepressor Proteins030104 developmental biologyTATA-likebiology.proteinTranscription factor II FATP-Binding Cassette TransportersRNA Polymerase IITranscription factor II DTranscriptomeTranscription factor II BProteïnesTranscription factor II AResearch ArticleBiotechnologyTranscription Factors
researchProduct

Chromatin structure of transposon Tn903 cloned into a yeast plasmid

1989

Transposon Tn903 contains the APH gene for kanamycin resistance, which is active in yeast [A. Jiménez and J. Davies (1980) Nature (London) 287, 869-871] and is flanked by two inverted repeats (IR) 1057 bp long. When plasmid pAJ50, carrying Tn903 and the 2-microns circle origin of replication, is cloned into Saccharomyces cerevisiae, nucleosomes are assembled in vivo on the prokaryotic DNA of the transposon. Indirect end labeling revealed that three nucleosomes are preferentially positioned on symmetrical sequences from both IRs. DNase I digestion also confirmed that the chromatin structure is symmetrical in both IRs. This suggests that sequence determinants are decisive for chromatin struct…

Transposable elementGeneticsInverted repeatGenes FungalRestriction MappingSaccharomyces cerevisiaeSpheroplastsBiologyOrigin of replicationChromatinNucleosomesChromatinchemistry.chemical_compoundTransformation GeneticPlasmidchemistryDNA Transposable ElementsDeoxyribonuclease INucleosomeCloning MolecularDNA FungalDeoxyribonuclease IMolecular BiologyDNAPlasmidsPlasmid
researchProduct

A rapid method for the screening of plasmids in transformed yeast strains

1988

A method for the rapid screening of plasmids in yeast cells has been developed. The method is an adaptation of the currently used alkaline lysis methods forEscherichia coli plasmids. Following the conditions described, several dozen ofSaccharomyces cerevisiae-transformed clones can be analyzed for their plasmid content in less than 2 h. The plasmids obtained by this procedure are suitable for restriction analysis or forE. coli andS. cerevisiae transformation.

GeneticsSaccharomyces cerevisiaeGeneral MedicineBiologymedicine.disease_causebiology.organism_classificationApplied Microbiology and BiotechnologyMicrobiologyEnterobacteriaceaeYeastTransformation (genetics)PlasmidRestriction mapmedicineAlkaline lysisEscherichia coliCurrent Microbiology
researchProduct

Different pathways for the nuclear import of yeast RNA polymerase II

2015

Recent studies suggest that RNA polymerase II (Pol II) has to be fully assembled before being imported into the nucleus, while other reports indicate a distinct mechanism to import large and small subunits. In yeast, Iwr1 binds to the holoenzyme assembled in the cytoplasm and directs its nuclear entry. However, as IWR1 is not an essential gene, Iwr1-independent pathway(s) for the nuclear import of Pol II must exist. In this paper, we investigate the transport into the nucleus of several large and small Pol II subunits in the mutants of genes involved in Pol II biogenesis. We also analyse subcellular localization in the presence of drugs that can potentially affect Pol II nuclear import. Our…

Active Transport Cell NucleusBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistrychemistry.chemical_compoundStructural BiologyRNA polymeraseGeneticsmedicineMolecular BiologyCell NucleusbiologyProcessivitySubcellular localizationMolecular biologyCell biologyCell nucleusmedicine.anatomical_structurechemistrybiology.proteinRNA Polymerase IITranscription factor II DNuclear transportCarrier ProteinsBiogenesisBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Pho85 and PI(4,5)P(2) regulate different lipid metabolic pathways in response to cold

2019

Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade trans…

Phosphatidylinositol 45-DiphosphateSaccharomyces cerevisiae ProteinsMembrane FluiditySphingoid basesAcclimatizationOrm2PhospholipidSaccharomyces cerevisiaePhosphoinositideTriacylglycerideSphingolipidArticle03 medical and health scienceschemistry.chemical_compoundGlycogen Synthase Kinase 3Gene Expression Regulation FungalMembrane fluidityLow temperatureInositolPhosphatidylinositolProtein kinase AMolecular Biology1-IP7030304 developmental biology0303 health sciencesChemistry030302 biochemistry & molecular biologyCell MembraneCell BiologyLipid MetabolismSphingolipidCyclin-Dependent KinasesCell biologyTORC2-Pkh1-Ypk1 signaling moduleCold TemperatureCytosolMetabolic pathwayPhospholipidMetabolic Networks and PathwaysSignal Transduction
researchProduct

Physical and Genetic Interactions Link the Yeast Protein Zds1p with mRNA Nuclear Export

2005

Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directl…

Saccharomyces cerevisiae ProteinsMolecular Sequence DataMutantActive Transport Cell NucleusSaccharomyces cerevisiaeBiologyBiochemistryCytosolGene expressionmedicineRNA MessengerNuclear poreNuclear export signalMolecular BiologyAdaptor Proteins Signal TransducingDNA PrimersGeneticsMessenger RNABase SequenceNuclear cap-binding protein complexRNA FungalCell BiologyCell biologyCell nucleusmedicine.anatomical_structureNucleoporinGenome FungalJournal of Biological Chemistry
researchProduct

Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.

2017

Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair…

0301 basic medicineTranscription factoriesCytoplasmSaccharomyces cerevisiae ProteinsDNA RepairTranscription GeneticBiophysicsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeBiochemistryGenomic Instability03 medical and health sciencesStructural BiologyGeneticsMolecular BiologyRNA polymerase II holoenzymePolymeraseCell NucleusbiologyGeneral transcription factorMolecular biologyChromatinCell biology030104 developmental biologybiology.proteinTranscription factor II FRNA Polymerase IITranscription factor II DCarrier ProteinsTranscription factor II BDNA DamageBiochimica et biophysica acta. Gene regulatory mechanisms
researchProduct

Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptio…

2002

The subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes, is modulated by carbon source availability. In cells growing in glucose, Msn2 is located mainly in the cytosol, whereas in carbon source-starved cells, Msn2 is located largely inside the nucleus. However, in cells lacking Reg1 (the regulatory subunit of the Reg1/Glc7 protein phosphatase complex), the regulation of subcellular distribution is absent, Msn2 being constitutively present in the cytosol. The localization defect in these mutants is specific for carbon starvation stress, and it is because of the presence of an abnormally active Snf1 protein kinase that inhibits the n…

Saccharomyces cerevisiae ProteinsRecombinant Fusion ProteinsSaccharomyces cerevisiaeMitogen-activated protein kinase kinaseBiologyProtein Serine-Threonine KinasesBiochemistryASK1Molecular BiologyDNA PrimersSirolimusMAP kinase kinase kinaseBase SequenceKinaseCell BiologySubcellular localizationCarbonCell biologyCulture MediaDNA-Binding ProteinsCytosolBiochemistryTrans-ActivatorsCyclin-dependent kinase 9Nuclear localization sequenceSubcellular FractionsTranscription FactorsThe Journal of biological chemistry
researchProduct

Sliding-end-labelling

1986

Abstract A method, termed ‘sliding-end-labelling’, has been devised to avoid a frequent artifact in nucleosome positioning by indirect end labelling, namely the appearing of DNA fragments originated by two nuclease cuts, one of them lying within the region covered by the probe. The method is applied to the nucleosome positioning in the yeast SUC2 gene for invertase.

Electrophoresis Agar GelNucleasebiologyBiophysicsNucleic Acid HybridizationDNA Restriction EnzymesSaccharomyces cerevisiaeCell BiologyBiochemistryNucleosomesChromatin Nucleosome positioning Indirect end labelling SUC2 gene (Saccharomyces cerevisiae)BiochemistryStructural BiologyLabellingGeneticsbiology.proteinMicrococcal NucleaseNucleosomeDNA FungalBiological systemMolecular BiologyFEBS Letters
researchProduct

Construction of a Trp commercial baker?s yeast strain by using food-safe-grade dominant drug resistance cassettes

2003

We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-t…

GeneticsSaccharomyces cerevisiae ProteinsIsomerase activitybiologyGenes FungalSaccharomyces cerevisiaeDrug Resistance MicrobialSaccharomyces cerevisiaeGeneral Medicinebiology.organism_classificationApplied Microbiology and BiotechnologyMicrobiologyMolecular biologyYeastFungal ProteinsTransformation GeneticPlasmidFood TechnologyDirect repeatGene conversionGeneAldose-Ketose IsomerasesBiotechnologyPlasmidsSouthern blotFEMS Yeast Research
researchProduct

The Yeast RNA Polymerase II-associated Factor Iwr1p Is Involved in the Basal and Regulated Transcription of Specific Genes

2009

RNA polymerase II (RNA pol II) is a multisubunit enzyme that requires many auxiliary factors for its activity. Over the years, these factors have been identified using both biochemical and genetic approaches. Recently, the systematic characterization of protein complexes by tandem affinity purification and mass spectroscopy has allowed the identification of new components of well established complexes, including the RNA pol II holoenzyme. Using this approach, a novel and highly conserved factor, Iwr1p, that physically interacts with most of the RNA pol II subunits has been described in yeast. Here we show that Iwr1p genetically interacts with components of the basal transcription machinery …

CytoplasmSaccharomyces cerevisiae ProteinsTranscription GeneticActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistryPhosphatesFungal ProteinsGene Expression Regulation FungalTranscription Chromatin and EpigeneticsPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsModels Geneticbeta-FructofuranosidaseGeneral transcription factorCell BiologyCell biologyKineticsGene Expression RegulationMicroscopy FluorescenceMutationbiology.proteinTranscription factor II FRNA Polymerase IITranscription factor II ETranscription factor II DCarrier ProteinsTranscription factor II BTranscription factor II AJournal of Biological Chemistry
researchProduct

Specific Defects in Different Transcription Complexes Compensate for the Requirement of the Negative Cofactor 2 Repressor in Saccharomyces cerevisiae

2007

Abstract Negative cofactor 2 (NC2) has been described as an essential and evolutionarily conserved transcriptional repressor, although in vitro and in vivo experiments suggest that it can function as both a positive and a negative effector of transcription. NC2 operates by interacting with the core promoter and components of the basal transcription machinery, like the TATA-binding protein (TBP). In this work, we have isolated mutants that suppress the growth defect caused by the depletion of NC2. We have identified mutations affecting components of three different complexes involved in the control of basal transcription: the mediator, TFIIH, and RNA pol II itself. Mutations in RNA pol II in…

Saccharomyces cerevisiae ProteinsTranscription GeneticRepressorRNA polymerase IISaccharomyces cerevisiaeInvestigationsGeneticsPromoter Regions GeneticTranscription factorAllelesGeneticsAdenosine TriphosphatasesTATA-Binding Protein Associated FactorsbiologyGeneral transcription factorDNA HelicasesPromoterPhosphoproteinsRepressor ProteinsProtein SubunitsTranscription Factor TFIIHMutationTranscription factor II Hbiology.proteinTrans-ActivatorsTranscription Factor TFIIBMutant ProteinsTranscription Factor TFIIDRNA Polymerase IITranscription factor II BTranscription Factor TFIIHTranscription Factors
researchProduct

Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors.

2012

Abstract Background The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the…

Nucleocytoplasmic Transport ProteinsSaccharomyces cerevisiae Proteinslcsh:QH426-470MutantActive Transport Cell NucleusRNA-binding proteinRNA polymerase IISaccharomyces cerevisiaeDEAD-box RNA HelicasesTranscription (biology)GeneticsGenetics(clinical)RNA MessengerNuclear poreMex67pTranscription factorGenetics (clinical)AllelesDbp5pGeneticsmRNA exportbiologyGeneral transcription factorfungiNuclear ProteinsRNA-Binding Proteinslcsh:GeneticsRibonucleoproteinsMutationbiology.proteinNuclear PoreRNA Polymerase IINuclear Pore ComplexTranscriptionBiogenesisTranscription FactorsResearch ArticleBMC genetics
researchProduct

Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae.

2000

In response to various stresses, as well as during the diauxic transition, the Msn2p and Msn4p transcription factors of Saccharomyces cerevisiae are activated and induce a large set of genes. This activation is inhibited by the Ras/cAMP/PKA (cAMP-dependent protein kinase) pathway. Here we show by immunoblotting experiments that Msn2p and Msn4p are phosphorylated in vivo during growth on glucose, and become hyperphosphorylated at the diauxic transition and upon heat shock. This hyperphosphorylation is correlated with activation of Msn2/4p-dependent transcription. An increased level of cAMP prevents and reverses these hyperphosphorylations, indicating that kinases other than PKA are involved.…

Saccharomyces cerevisiae ProteinsbiologyKinaseSaccharomyces cerevisiaeImmunoblottingHyperphosphorylationSaccharomyces cerevisiaebiology.organism_classificationAlkaline PhosphataseMicrobiologyCyclic AMP-Dependent Protein KinasesCell biologyDNA-Binding ProteinsBiochemistryTranscription (biology)Gene Expression Regulation FungalCyclic AMPPhosphorylationHeat shockPhosphorylationProtein kinase ATranscription factorHeat-Shock ResponseTranscription FactorsMicrobiology (Reading, England)
researchProduct

Rtp1p Is a Karyopherin-Like Protein Required for RNA Polymerase II Biogenesis

2013

The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its bi…

Saccharomyces cerevisiae ProteinsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeKaryopherinsBiologyGene Expression Regulation FungalTranscriptional regulationRNA polymerase IProtein Interaction MapsMolecular BiologyRNA polymerase II holoenzymeR2TP complexGeneticsNuclear cap-binding protein complexArticlesCell BiologyPhosphoproteinsUp-RegulationCell biologyNuclear Pore Complex Proteinsbiology.proteinRNA Polymerase IITranscription factor II DCarrier ProteinsGene DeletionSmall nuclear RNATranscription Factors
researchProduct

Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition…

2020

The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin‐tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl‐CoA carboxylase Acc1, the rate‐limiting enzyme in fatty acid de novo production, supporting a ch…

ThermotoleranceBioquímicaSaccharomyces cerevisiae ProteinsSphingoid basesSaccharomyces cerevisiaePopulationPloidy levelMicrobiologiaBioengineeringSaccharomyces cerevisiaeApplied Microbiology and BiotechnologyBiochemistrySphingolipidFatty Acids Monounsaturated03 medical and health scienceschemistry.chemical_compoundMyriocinBaker’s yeasteducationFatty acid synthesisResearch Articles030304 developmental biologychemistry.chemical_classification0303 health scienceseducation.field_of_studybiologyStrain (chemistry)030306 microbiologyFatty acidLipid metabolismbiology.organism_classificationYeastHeat-stressPhospholipidTriacylgliceridechemistryBiochemistryLaboratoriesTP248.13-248.65BiotechnologyResearch Article
researchProduct

DNase I sensitivity of the chromatin of the yeast SUC2 gene for invertase.

1986

The DNase I sensitivity of chromatin of the yeast SUC2 gene, which encodes two forms of invertase, has been studied both in the genome and in a multicopy plasmid carrying the gene and its flaking sequences. Whereas little if any difference in the DNase I sensitivity of the flanking regions was found between the repressed and the derepressed states, derepression of the gene was accompanied by a large increase in the sensitivity of the transcribed region. A well-defined DNase I hypersensitive site was found centered at approximately 120 bp downstream from the end of the coding region. This site seems to be flanked in the 3' non-coding region by strictly positioned nucleosomes, and the structu…

Glycoside Hydrolasesbeta-FructofuranosidaseTATA boxGenes FungalSaccharomyces cerevisiaeBiologyMolecular biologyChromatinGenesRegulatory sequenceGeneticsCoding regionNucleosomeDeoxyribonuclease IDNase I hypersensitive siteDeoxyribonuclease IMolecular BiologyHypersensitive siteDerepressionPlasmidsMoleculargeneral genetics : MGG
researchProduct

Gene Expression Analysis of Cold and Freeze Stress in Baker's Yeast

2002

ABSTRACT We used mRNA differential display to assess yeast gene expression under cold or freeze shock stress conditions. We found both up- and down-regulation of genes, although repression was more common. We identified and sequenced several cold-induced genes exhibiting the largest differences. We confirmed, by Northern blotting, the specificity of the response for TPI1 , which encodes triose-phosphate isomerase; ERG10 , the gene for acetoacetyl coenzyme A thiolase; and IMH1 , which encodes a protein implicated in protein transport. These genes also were induced under other stress conditions, suggesting that this cold response is mediated by a general stress mechanism. We determined the ph…

EcologyStrain (chemistry)Genes FungalSaccharomyces cerevisiaeGenetics and Molecular BiologySaccharomyces cerevisiaeBiologyBlotting Northernbiology.organism_classificationApplied Microbiology and BiotechnologyMolecular biologyPhenotypeYeastUp-RegulationTransport proteinCold TemperatureGene Expression Regulation FungalGene expressionRNA MessengerNorthern blotGeneFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast

2020

Hyperphosphorylation of protein tau is a hallmark of Alzheimer’s disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altere…

0301 basic medicineCDK5Cèl·lulesTau proteinSit42HyperphosphorylationSaccharomyces cerevisiaeSACCHAROMYCES-CEREVISIAECeramide03 medical and health scienceschemistry.chemical_compoundCell and Developmental Biology0302 clinical medicineInositolceramideYpk1Inositol phosphatelcsh:QH301-705.51-IP7Original Researchchemistry.chemical_classificationScience & TechnologybiologyChemistryKinaseNEURODEGENERATIONLipid metabolismCell BiologyProtein phosphatase 2Fpk1MICROTUBULE-BINDINGPho85SERINE PALMITOYLTRANSFERASECell biologyALZHEIMERS-DISEASE030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisGLYCOGEN-SYNTHASE KINASE-3-BETAbiology.proteinKINASE-ACTIVITYPhosphorylationLife Sciences & BiomedicineBETA TOXICITYProteïnesDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

The formation of hybrid complexes between isoenzymes of glyceraldehyde‐3‐phosphate dehydrogenase regulates its aggregation state, the glycolytic acti…

2019

The glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis‐related and glycolysis‐unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its abil…

Saccharomyces cerevisiae Proteinslcsh:BiotechnologySaccharomyces cerevisiaeMicrobiologiaBioengineeringDehydrogenaseSaccharomyces cerevisiaeProtein aggregationApplied Microbiology and BiotechnologyBiochemistryIsozyme03 medical and health scienceslcsh:TP248.13-248.65Tdh2Tdh1Tdh3Ceramide synthaseResearch ArticlesGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biologySphingolipids0303 health sciencesbiology030306 microbiologyChemistryGlyceraldehyde-3-Phosphate Dehydrogenasesbiology.organism_classificationLipidsSphingolipidYeastIsoenzymesMetabolismBiochemistrybiology.proteinGlyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)Protein aggregationEnzimsGlycolysisFlux (metabolism)Research ArticleBiotechnologyMicrobial Biotechnology
researchProduct

The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein.

1991

Abstract I have cloned a yeast gene, RGM1, which encodes a proline-rich zinc, finger protein. rgm1 mutants do not show any obvious phenotype but overexpression of RGM1 gene greatly impairs cell growth. The proline-rich region of RGM1 attached to a heterologous DNA binding domain is able to repress the expression of the target gene. RGM1 shares similar zinc finger motifs with the mammalian Egr (early growth response) proteins as well as proline-rich sequences with a high serine and threonine content, suggesting that RGM1 and Egr proteins could have functional similarities.

Recombinant Fusion ProteinsMolecular Sequence DataRestriction MappingGene ExpressionSaccharomyces cerevisiaeBiologyZIC2TransfectionSequence Homology Nucleic AcidGene expressionGeneticsAmino Acid SequenceCloning MolecularLIM domainSIN3BZinc fingerBase SequenceZinc FingersDNA-binding domainZinc finger nucleaseRING finger domainbody regionsRepressor ProteinsBiochemistryMutagenesisCarbohydrate MetabolismPlasmidsNucleic acids research
researchProduct

Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast.

2000

The transcriptional response to environmental changes is a major topic in both basic and applied research. From a basic point of view, to understand this response includes unravelling how the stress signal is sensed and transduced to the nucleus, to identify which genes are induced under each stress condition and, finally, to establish the phenotypic consequences of this induction in stress tolerance. The possibility of using genetic approaches has made the yeast Saccharomyces cerevisiae a compelling model to study stress response at a molecular level. Moreover, this information can be used to isolate and characterise stress-related proteins in higher eukaryotes and to design strategies to …

GeneticsbiologySaccharomyces cerevisiaeGenes FungalTrehaloseSaccharomyces cerevisiaebiology.organism_classificationMicrobiologyPhenotypeYeastCell biologyOxidative StressInfectious DiseasesOsmotic PressureHeat shock proteinHeat shockSignal transductionGeneTranscription factorHeat-Shock ProteinsHeat-Shock ResponseSignal TransductionTranscription FactorsFEMS microbiology reviews
researchProduct

Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-…

1987

Micrococcal nuclease digestion has been used to investigate some fine details of the chromatin structure of the yeast SUC2 gene for invertase. Precisely positioned nucleosomes have been found on a 2 kb sequence from the 3' non-coding region, and four nucleosomes also seem to occupy fixed positions on the 5' flank. Eleven nucleosomes lie on the coding region, although their positioning is not as precise as in the flanks. When the gene is derepressed, these latter nucleosomes adopt a more open conformation and so do two of the nucleosomes positioned on the 5' flank. A dramatic change occurs in the 3' flank, whose involvement in the structural transitions of chromatin upon gene activation is p…

Regulation of gene expressionGeneticsbiologyGlycoside Hydrolasesbeta-FructofuranosidaseGenes FungalChromosomeDNA Restriction EnzymesSaccharomyces cerevisiaeChromatinChromatinNucleosomesPlasmidGenesGeneticsbiology.proteinNucleosomeCoding regionMicrococcal NucleaseEnzyme RepressionDerepressionMicrococcal nuclease
researchProduct

Functional analysis of 12 ORFs fromSaccharomyces cerevisiae chromosome II

1999

Twelve different ORFs have been deleted from the right arm of Saccharomyces cerevisiae chromosome II; namely YBR193c, YBR194w, YBR197c, YBR198c, YBR201w, YBR203w, YBR207w, YBR209w, YBR210w, YBR211c, YBR217w and YBR228w. Tetrad analysis of heterozygous deletant strains revealed that YBR193c, YBR198c and YBR211c are essential genes for vegetative growth. No effects were detected in any of the haploid deletion mutants for the rest of the ORFs with respect to growth, gross morphology or mating.

GeneticsFunctional analysisbiologySaccharomyces cerevisiaeChromosomeBioengineeringbiology.organism_classificationApplied Microbiology and BiotechnologyBiochemistryGeneticsORFSPloidyTetradGeneFunctional genomicsBiotechnologyYeast
researchProduct