6533b837fe1ef96bd12a2776

RESEARCH PRODUCT

Using Taguchi method for the optimization of processing variables to prepare porous scaffolds by combined melt mixing/particulate leaching

Roberto ScaffaroFrancesco LoprestiFiorenza Sutera

subject

Combined processingMaterials science02 engineering and technology010402 general chemistry01 natural sciencesSalt leachingchemistry.chemical_compoundTaguchi methodsPorous scaffoldMelt mixinglcsh:TA401-492General Materials ScienceComposite materialPorosityInterconnectionANOVAMelt mixingMechanical Engineeringtechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialeParticulates021001 nanoscience & nanotechnologyPorous scaffold0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsTaguchi methodlcsh:Materials of engineering and construction. Mechanics of materialsLeaching (metallurgy)0210 nano-technologyEthylene glycol

description

Synthetic biopolymers have made significant inroads into the development of devices for tissue regeneration. In this context, a challenge is the achievement of appropriate properties mimicking the natural extracellular matrix by fabricating scaffolds presenting mechanical properties, specific surface, porosity and pore interconnection adequate for the final application. This study involved a systematic procedure based on Taguchi method for parameters optimization of melt mixing/particulate leaching combined processes aiming to enhance the performance of the scaffolds. In particular, it was evaluated the effect of time and temperature of melt mixing of the poly(lactic acid) matrix with two water-soluble inorganic porogen agents (i.e. NaCl or CaCl2) with two different pore size and poly(ethylene glycol). Thereafter, the blends were compression molded and water-leached for different time and at different pH. By adopting L8 Taguchi orthogonal array, seven control factors, each at two levels, were tested, and ANOVA was applied to find the statistically significant factors and the combination of their optimal levels. The results revealed that the mixing temperature had the highest effect on mechanical properties. Moreover, the internal architecture of the scaffolds was studied by morphological analysis, finding that it is affected by the kind of porogen salt and by mixing time. Keywords: Porous scaffold, Melt mixing, Salt leaching, Combined processing, Taguchi method, ANOVA

https://doi.org/10.1016/j.matdes.2017.06.025