fitforthem
about

scope and guide to the platform

—research groups

research groups network graph visualization

—repositories

catalog of the institutional repositories

—heritage

selection of collections, museum, cultural sites and ancient books

By continuing your visit to this site, you accept the use of essential cookies.

Read more
6533b837fe1ef96bd12a280b

RESEARCH PRODUCT

Birman's conjecture for singular braids on closed surfaces

Luis Paris

subject

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]MonoidPure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric TopologyMathematics::Group Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Category TheoryMathematics::Quantum AlgebraGenus (mathematics)0103 physical sciencesFOS: MathematicsBraid0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Algebra and Number TheoryConjecture010102 general mathematicsGeometric Topology (math.GT)20F36;57M27Braid theorySurface (topology)Mathematics::Geometric TopologyInjective function57M27010307 mathematical physicsMathematics - Group Theory

description

Let M be a closed oriented surface of genus g≥1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M)→ℤ[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective.

yearjournalcountryeditionlanguage
2003-07-17
https://hal.science/hal-00128178
EU flag

FORTHEM European University Alliance is co-funded by the European Union. FIT FORTHEM has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101017248. The content of this website represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission.

University of Jyväskylä logoUniversity of Jyväskylä's websiteUniversity of Burgundy logoUniversity of Burgundy's websiteUniversity of Mainz logoUniversity of Mainz's websiteUniversity of Palermo logoUniversity of Palermo's websiteUniversity of Latvia logoUniversity of Latvia's website
University of Agder logoUniversity of Agder's websiteUniversity of Opole logoUniversity of Opole's websiteUniversity of Sibiu logoUniversity of Sibiu's websiteUniversity of València logoUniversity of València's website
FORTHEM logoFORTHEM alliance's website