6533b837fe1ef96bd12a2920

RESEARCH PRODUCT

Ancient symbiosis confers desiccation resistance to stored grain pest beetles

Martin KaltenpothRudy PlarreTobias EnglCarla GorseTheresa KruegerThorsten H. P. SchmidtNadia EberlCornel Adler

subject

0106 biological sciences0301 basic medicinemedia_common.quotation_subjectOryzaephilus surinamensisContext (language use)Insect010603 evolutionary biology01 natural sciences03 medical and health sciencesBotanyGeneticsAnimalsDesiccationSymbiosisEcology Evolution Behavior and SystematicsPhylogenymedia_commonAbiotic componentbiologyEcologyHost Microbial InteractionsEcologyBacteroidetesfungifood and beveragesSilvanidaebiochemical phenomena metabolism and nutritionbiology.organism_classification030104 developmental biologyBostrichidaeWeevilsPEST analysisDesiccation

description

AbstractMicrobial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, e.g. temperature and humidity. Here we report on an ancient (~400 Mya) clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated withgrain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidities that characterize dry grain storage facilities.

10.1101/182725http://dx.doi.org/10.1101/182725