6533b837fe1ef96bd12a3105

RESEARCH PRODUCT

Inversion of matrix pencils for generalized systems

Zdzislaw TrzaskaWieslaw Marszalek

subject

State-transition matrixComputer Networks and CommunicationsApplied MathematicsMathematicsofComputing_NUMERICALANALYSISSingle-entry matrixInversion (discrete mathematics)Matrix (mathematics)Adjugate matrixControl and Systems EngineeringComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONSignal ProcessingCalculusMatrix pencilState spaceApplied mathematicsMathematicsCharacteristic polynomial

description

Abstract This paper clarifies the nature of the Leverrier-Faddeev algorithm for generalized and state-space systems. It presents useful diagrams for recursive computation of the coefficients of the characteristic polynomial and the coefficient matrices of the adjoint matrix for various matrix pencils. A simplified case covers recursive equations and diagrams for inversion of the second-order matrix pencil (Es2 + A1s + A0) where E may be singular. The appendix provides two examples of mechanical and heat exchange systems which can be described by the generalized models.

https://doi.org/10.1016/0016-0032(93)90094-b