6533b837fe1ef96bd12a314e
RESEARCH PRODUCT
Alignment-free Genomic Analysis via a Big Data Spark Platform
Raffaele GiancarloGiuseppe CattaneoUmberto Ferraro PetrilloFrancesco Palinisubject
FOS: Computer and information sciencesStatistics and Probabilitysequence analysisComputer science0206 medical engineeringBig data02 engineering and technologyMachine learningcomputer.software_genreBiochemistry03 medical and health sciencesSpark (mathematics)MapReduceMolecular Biology030304 developmental biology0303 health sciencesSettore INF/01 - Informaticabusiness.industryBioinformatics High Performance Computing Compressed Data StructuresMapReduce; hadoop; sequence analysisComputer Science ApplicationsComputational MathematicsTask (computing)Computer Science - Distributed Parallel and Cluster ComputingComputational Theory and MathematicsDistributed Parallel and Cluster Computing (cs.DC)Artificial intelligencehadoopbusinesscomputer020602 bioinformaticsdescription
Abstract Motivation Alignment-free distance and similarity functions (AF functions, for short) are a well-established alternative to pairwise and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to data-intensive applications, the computation of AF functions is a Big Data problem, with the recent literature indicating that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat surprisingly, despite the increasing popularity of Big Data technologies in computational biology, the development of a Big Data platform for those tasks has not been pursued, possibly due to its complexity. Results We fill this important gap by introducing FADE, the first extensible, efficient and scalable Spark platform for alignment-free genomic analysis. It supports natively eighteen of the best performing AF functions coming out of a recent hallmark benchmarking study. FADE development and potential impact comprises novel aspects of interest. Namely, (i) a considerable effort of distributed algorithms, the most tangible result being a much faster execution time of reference methods like MASH and FSWM; (ii) a software design that makes FADE user-friendly and easily extendable by Spark non-specialists; (iii) its ability to support data- and compute-intensive tasks. About this, we provide a novel and much needed analysis of how informative and robust AF functions are, in terms of the statistical significance of their output. Our findings naturally extend the ones of the highly regarded benchmarking study, since the functions that can really be used are reduced to a handful of the eighteen included in FADE. Availabilityand implementation The software and the datasets are available at https://github.com/fpalini/fade. Supplementary information Supplementary data are available at Bioinformatics online.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | Bioinformatics |