6533b837fe1ef96bd12a3319

RESEARCH PRODUCT

Exponential Codimension Growth of PI Algebras: An Exact Estimate

Antonio GiambrunoMikhail Zaicev

subject

CombinatoricsMathematics(all)SequenceMathematics::Commutative AlgebraIntegerGeneral MathematicsSubalgebraZero (complex analysis)PiCodimensionAssociative propertyMathematicsExponential function

description

Abstract LetAbe an associative PI-algebra over a fieldFof characteristic zero. By studying the exponential behavior of the sequence of codimensions {cn(A)} ofA, we prove thatInv(A)=limn→∞  c n ( A ) always exists and is an integer. We also give an explicit way for computing such integer: letBbe a finite dimensionalZ2-graded algebra whose Grassmann envelopeG(B) satisfies the same identities ofA; thenInv(A)=Inv(G(B))=dim C(0)+dim C(1)whereC(0)+C(1)is a suitableZ2-graded semisimple subalgebra ofB.

https://doi.org/10.1006/aima.1998.1790