6533b837fe1ef96bd12a3343
RESEARCH PRODUCT
Modelling of natural synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and Ion Pairing approaches
Alba GiacaloneFrancesco CreaAntonio GianguzzaDaniela PiazzeseSilvio Sammartanosubject
chemistry.chemical_classificationChemistryArtificial seawatermedia_common.quotation_subjectNatural waterInorganic chemistryArtificial seawaterSalt (chemistry)General ChemistryElectrolyteOceanographyPitzerIon Pair modelsPolyelectrolyteIonSpeciationNatural and synthetic polyelectrolytes; Specific ion Interaction Theory (SIT); Pitzer; Ion Pair models; Dependence on medium and ionic strength; Alginic and fulvic acids; Artificial seawaterDependence on medium and ionic strengthNatural and synthetic polyelectrolytesEnvironmental ChemistrySeawaterSpecific ion Interaction Theory (SIT)Alginic and fulvic acidsWater Science and Technologymedia_commondescription
Abstract In this paper SIT and Pitzer models are used for the first time to describe the interactions of natural and synthetic polyelectrolytes in natural waters. Measurements were made potentiometrically at 25 °C in single electrolyte media, such as Et 4 NI and NaCl (for fulvic acid 0.1 − 1 S single salt ” BA, with cation B and anion A representing all the major cations (Na + , K + , Mg 2+ , Ca 2+ ) and anions (Cl − , SO 4 2− ) in natural sea water, respectively. The ion pair formation model was also applied to fulvate and alginate in artificial sea water by examining the interaction of polyanions with the single sea water cation. Results were compared with those obtained from previous speciation studies of synthetic polyelectrolytes (polyacrylic and polymethacrylic acids of different molecular weights). Results indicate that the SIT, Pitzer and Ion Pairing formation models used in studies of low molecular weight electrolytes may also be applied to polyelctrolytes with a few simple adjustments.
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-01 |