6533b837fe1ef96bd12a3448

RESEARCH PRODUCT

Mechanisms of Water Interaction with Pore Systems of Hydrochar and Pyrochar from Poplar Forestry Waste

Pellegrino ConteValentina MarsalaGiuseppe AlonzoBruno GlaserGiulia CimoUlrich M. Hanke

subject

Magnetic Resonance SpectroscopyWater flowSettore AGR/13 - Chimica Agraria1600 General Chemistry1100 General Agricultural and Biological SciencesHydrothermal carbonizationAdsorptionBiocharmedicine910 Geography & travelPorosityWaste ProductsChemistryTemperatureWaterForestryGeneral Chemistry10122 Institute of GeographyPopulusAgronomyChemical engineeringCharcoalGeneral Agricultural and Biological SciencesPorous mediumSaturation (chemistry)Porosityfast field cycling NMR relaxometry hydrochar pyrochar biochar water dynamicsActivated carbonmedicine.drug

description

The aim of this study was to understand the water-surface interactions of two chars obtained by gasification (pyrochar) and hydrothermal carbonization (hydrochar) of a poplar biomass. The two samples revealed different chemical compositions as evidenced by solid state (13)C NMR spectroscopy. In fact, hydrochar resulted in a lignin-like material still containing oxygenated functionalities. Pyrochar was a polyaromatic system in which no heteronuclei were detected. After saturation with water, hydrochar and pyrochar were analyzed by fast field cycling (FFC) NMR relaxometry. Results showed that water movement in hydrochar was mainly confined in very small pores. Conversely, water movement in pyrochar led to the conclusion that a larger number of transitional and very large pores were present. These results were confirmed by porosity evaluation derived from gas adsorption. Variable-temperature FFC NMR experiments confirmed a slow-motion regime due to a preferential diffusion of water on the solid surface. Conversely, the higher number of large pores in pyrochar allowed slow movement only up to 50 °C. As the temperature was raised to 80 °C, water interactions with the pore surface became weaker, thereby allowing a three-dimensional water exchange with the bulk liquid. This paper has shown that pore size distribution was more important than chemical composition in affecting water movement in two chemically different charred systems.

http://hdl.handle.net/10447/99451