6533b837fe1ef96bd12a3474

RESEARCH PRODUCT

Generalized Wiener Process and Kolmogorov's Equation for Diffusion induced by Non-Gaussian Noise Source

Bernardo SpagnoloAlexander A. Dubkov

subject

Diffusion equationStatistical Mechanics (cond-mat.stat-mech)General MathematicsMathematical analysisGeneral Physics and AstronomyFOS: Physical sciencesOrnstein–Uhlenbeck processCondensed Matter - Soft Condensed MatterGaussian random fieldLangevin equationsymbols.namesakeStochastic differential equationAdditive white Gaussian noiseGaussian noisesymbolsProcess and Kolmogorov'sSoft Condensed Matter (cond-mat.soft)Fokker–Planck equationCondensed Matter - Statistical MechanicsMathematics

description

We show that the increments of generalized Wiener process, useful to describe non-Gaussian white noise sources, have the properties of infinitely divisible random processes. Using functional approach and the new correlation formula for non-Gaussian white noise we derive directly from Langevin equation, with such a random source, the Kolmogorov's equation for Markovian non-Gaussian process. From this equation we obtain the Fokker-Planck equation for nonlinear system driven by white Gaussian noise, the Kolmogorov-Feller equation for discontinuous Markovian processes, and the fractional Fokker-Planck equation for anomalous diffusion. The stationary probability distributions for some simple cases of anomalous diffusion are derived.

https://dx.doi.org/10.48550/arxiv.cond-mat/0505270