6533b837fe1ef96bd12a380a

RESEARCH PRODUCT

Role of adipose tissue cannabinoid 1 receptor (CB1R) on lipolysis and consequences on lipid and carbohydrate metabolism in mice

Tania Muller

subject

Lipolyse[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyEndocannabinoid systemLiverLipolysisInsulinorésistanceAdipose tissueTissu adipeuxInsulin resistanceSystème endocannabinoïdesObesityObésitéFoie

description

Role of adipose tissue cannabinoid receptor 1 (CB1R) on lipolysis and consequences on lipid and carbohydrate metabolism in miceObesity is accompanied with lipolysis deregulation responsible for excessive Free Fatty Acid (FFA) release, which are key actors in the implementation of peripheral insulin resistance. In parallel, it is now well established that obesity is associated with EndoCannabinoid System (ECS) activity dysfunction in several metabolic tissues. If it is well described that overactivation of this system in the Adipose Tissue (AT) is favourable to its expansion, the consequences on lipolysis remain to be elucidated.The main objective of this thesis work was to precise the role of ECS on lipolysis regulation. To achieve this, AEA, a cannabinoid receptor 1 (CB1R) agonist and JZL195, an inhibitor of the enzymes responsible for the degradation of endocannabinoids, were used, in vivo in mice and in vitro on an explant model, to increase the endocannabinoid tone in the AT and analyse the consequences on lipolytic activity. Then, ECS blockade effect on lipolysis was studied in obese mice by using a specific CB1R antagonist, Rimonabant.This work demonstrates that activation of ECS under high insulinemia condition (postprandial state) alters insulin signalling limiting its antilipolytic effect and increasing FFA release which can ultimately be deleterious for peripheral tissues. Conversely, when insulin signalling pathways are weakly activated, as it is the case during fasting, ECS activation comes with PI3K/Akt activation impeding fasting induced lipolysis and promoting lipid storage and AT expansion. This experimental situation resembles that encountered in obesity which is associated, both with low activity of PI3K/Akt pathway (insulin resistance) and ECS overactivation. CB1R blockade by Rimonabant in obese mice lead to a strong stimulation of lipolysis which seems to be dependent on adenylate cyclase activation. Considering that Rimonabant treatment was also reported to be associated with improved fatty acid catabolism, it can be advanced that FFA released in excess in these conditions, do not have deleterious effects.In conclusion, this work suggests that ECS activation is involved in the onset of AT insulin resistance which ultimately could indirectly affect peripheral tissues via lipolysis derived FFA lipotoxicity. During obesity, the association of insulin resistance and ECS tone elevation would promote lipid storage and AT expansion. Finally, AT CB1R specific blockade could constitute an interesting therapeutic target limiting metabolic deregulations linked to obesity.Key words: Obesity, Insulin Resistance, Endocannabinoid System, Adipose Tissue, Lipolysis, Lipid and carbohydrate metabolism

https://theses.hal.science/tel-02094504