6533b838fe1ef96bd12a3d63

RESEARCH PRODUCT

Image Segmentation through a Hierarchy of Minimum Spanning Trees

Gaspare VetranoFilippo VellaSalvatore GaglioIgnazio Infantino

subject

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSpanning treebusiness.industrySingle-linkage clusteringComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionImage segmentationMinimum spanning treeImage SegmentationMinimum Spanning TreesClusteringDistributed minimum spanning treeMinimum spanning tree-based segmentationKruskal's algorithmArtificial IntelligenceComputer Science::Computer Vision and Pattern RecognitionReverse-delete algorithmArtificial intelligencebusinessMathematics

description

Many approaches have been adopted to solve the problem of image segmentation. Among them a noticeable part is based on graph theory casting the pixels as nodes in a graph. This paper proposes an algorithm to select clusters in the images (corresponding to relevant segments in the image) corresponding to the areas induced in the images through the search of the Minimum Spanning Tree (MST). In particular is is based on a clustering algorithm that extracts clusters computing a hierarchy of Minimum Spanning Trees. The main drawback of this previous algorithm is that the dimension of the cluster is not predictable and a relevant portion of found clusters can be composed by micro-clusters that are useless in the segments computation. A new algorithm and a new metric are proposed to select the exact number of clusters and avoid unmeaningful clusters.

10.1109/sitis.2012.62http://hdl.handle.net/10447/74862